Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ôi t làm nhầm....kq là
3,8 tấn ( cân bằng thêm 2 vào h2so4 là okok)
FeS2 ==> H2SO4
120g 98g
2,85( vì 5% tạp chất) 2,3275 (tấn)
vì H=80% ====> m H2SO4=1,3965( tấn). nhưng có C% H2SO4= 98%
VẬY mdd H2S04 là 1,425 tấn
C17H35COO)3C3H5 + 3NaOH -> 3 C17H35COONa + C3H5(OH)3
890 kg 918 kg
x kg 720 kg
=> x = 698,04 kg.
a) Ta có: Mật độ xác suất tìm thấy electron trong vùng không gian xung quanh hạt nhân nguyên tử:
D(r) = R2(r) . r2
= 416/729 . a0-5 . r2 . (2 - r/3a0)2 . e-2r/3a0 . r2
= 416/729 . a0-5 . (4r4 - 4r5/3a0 + r6/9a02) . e-2r/3a0
Khảo sát hàm số D(r) thuộc r
Xét: d D(r)/ dr = 416/729 . a0-5 . [(16r3 - 20r4/3a0 + 2r5/3a02) . e-2r/3a0 - (4r4 - 4r5/3a0 + r6/9a02) . 2/3a0 . e-2r/3a0 ]
= 416/729 . a0-5 . e-2r/3a0 . r3 . (16a03 - 28r/3a0 + 14r2/9a02 - 2r3/27a03)
= 832/19683 . a0-8 . e-2r/3a0 . r3 . (-r3 +21r2.a0 - 126r.a02 +216a03)
= - 832/19683 . a0-8 . e-2r/3a0 . r3 . (r - 6a0).(r - 3a0).(r - 12a0)
d D(r)/ dr = 0. Suy ra r =0; r =3a0 ; r = 6a0; r = 12a0
Với r = 0 : D(r) =0
r =3a0 : D(r) = 416/9 .a-1 . e-2
r =6a0 : D(r) = 0
r =12a0 : D(r) = 425984/9.a-1 . e-8
b) Ai vẽ câu này rồi cho up lên với, cám ơn mọi người trước nhé!
a)Mật độ xác suất có mặt electron tỷ lệ với |R3P|2.r2
D(r)=|R3P|2.r2 =D (r)=\(\frac{416}{729}\) .a0-5.(2r2- \(\frac{r^3}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)
Lấy đạo hàm của D theo r để khảo sát mật độ xác suất :
D' (r)= \(\frac{416}{729}\) .a0-5.2.(2r2-\(\frac{r^3}{3a_0}\)).(4r-\(\frac{r^2}{a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)+\(\frac{416}{729}\) .a0-5.(2r2-\(\frac{r^3}{3a_0}\))2.(-\(\frac{2}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)
=\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\). (2r2-\(\frac{r^3}{3a_0}\)) .[(4r-\(\frac{r^2}{a_0}\)).a0 -\(\frac{1}{3}\). (2r2-\(\frac{r^3}{3a_0}\))]
=\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\).r3.(2- \(\frac{r}{3a_0}\)).(\(\frac{r^2}{9a_0}-\frac{5r}{3}+4a_0\))
=>D’(r)=0 => r=0 ,r=3a0 ,r=6a0 ,r=12a0.
Với:r=0 =>D(r)=0
r=3a0 =>D(r)=0
r=6a0 =>D(r)=\(\frac{416}{9a_0.e^2}\)
r=12a0=>D(r)=\(\frac{425984}{a_0.e^8}\)
b)
Ta có: cos 450 = \(\frac{\text{ λ}}{\text{ λ}'}=\frac{\text{ λ}}{0,22}\)
=> λ = cos450.0,22 = 0.156Ǻ
Thưa thầy, thầy chữa bài này được không ạ. Thầy ra lâu rồi nhưng chưa có đáp án đúng
Ta có:
Hàm \(\Psi\)được gọi là hàm chuẩn hóa nếu: \(\int\Psi.\Psi^{\circledast}d\tau=1hay\int\Psi^2d\tau=1\)
Hàm \(\Psi\)chưa chuẩn hóa là: \(\int\left|\Psi\right|^2d\tau=N\left(N\ne1\right)\)
Để có hàm chuẩn hóa, chia cả 2 vế cho N,ta có:
\(\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Rightarrow\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=1\)
Trong đó: \(\Psi=\frac{1}{\sqrt{N}}.\Psi\)là hàm chuẩn hóa; \(\frac{1}{\sqrt{N}}\)là thừa số chuẩn hóa
Ta có:
\(\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Leftrightarrow\frac{1}{N}.\iiint\left|\Psi\right|^2dxdydz=1\)
Chuyển sang tọa độ cầu, ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)với \(\begin{cases}0\le r\le\infty\\0\le\varphi\le2\pi\\0\le\theta\le\pi\end{cases}\)
\(\Rightarrow\frac{1}{N}.\iiint\left(r.\cos\varphi.sin\theta\right)^2.e^{-\frac{r}{a_o}}.r^2.sin\theta drd\varphi d\theta=1\)
\(\Leftrightarrow\frac{1}{N}.\int\limits^{\infty}_0r^4.e^{-\frac{r}{a_o}}dr.\int\limits^{2\pi}_0\cos^2\varphi d\varphi.\int\limits^{\pi}_0sin^3\theta d\theta=1\)
\(\Leftrightarrow\frac{1}{N}.\frac{4!}{\left(\frac{1}{a_o}\right)^5}.\int\limits^{2\pi}_0\frac{\cos\left(2\varphi\right)+1}{2}d\varphi\int\limits^{\pi}_0\frac{3.sin\theta-sin3\theta}{4}d\theta=1\)(do \(\int\limits^{\infty}_0x^n.e^{-a.x}dx=\frac{n!}{a^{n+1}}\))
\(\Leftrightarrow\frac{1}{N}.24.a^5_o.\frac{4}{3}.\pi=1\)
\(\Leftrightarrow\frac{1}{N}=\frac{1}{32.a^5_o.\pi}\)
\(\Rightarrow\)Thừa số chuẩn hóa là: \(\frac{1}{\sqrt{N}}=\sqrt{\frac{1}{32.a^5_o.\pi}}\); Hàm chuẩn hóa: \(\Psi=\frac{1}{\sqrt{N}}.\Psi=\sqrt{\frac{1}{32.a^5_o.\pi}}.x.e^{-\frac{r}{2a_o}}\)
áp dụng dk chuẩn hóa hàm sóng. \(\int\psi\psi^{\cdot}d\tau=1.\)
ta có: \(\int N.x.e^{-\frac{r}{2a_0}}.N.x.e^{-\frac{r}{2a_0}}.d\tau=1=N^2.\int_0^{\infty}r^4e^{-\frac{r}{a_0}}dr.\int_0^{\pi}\sin^3\theta d\tau.\int^{2\pi}_0\cos^2\varphi d\varphi=N^2.I_1.I_2.I_3\)
Thấy tích phân I1 có dạng tích phân hàm gamma. \(\int^{+\infty}_0x^ne^{-ax}dx=\int^{+\infty}_0\frac{\left(\left(ax\right)^{n+1-1}e^{-ax}\right)d\left(ax\right)}{a^{n+1}}=\frac{\Gamma\left(n+1\right)!}{a^{n+1}}=\frac{n!}{a^{n+1}}.\)
.áp dụng cho I1 ta được I\(I1=4!.a_0^5=24a^5_0\). tính \(I2=\int_0^{\pi}\sin^3\theta d\theta=\int_0^{\pi}\left(\cos^2-1\right)d\left(\cos\theta\right)=\frac{4}{3}\). tính tp \(I3=\int_0^{2\pi}\cos^2\varphi d\varphi=\int_0^{2\pi}\frac{\left(1-\cos\left(2\varphi\right)\right)}{2}d\varphi=\pi\)
suy ra \(\frac{N^2.24a_0^5.\pi.4}{3}=1\). vậy N=\(N=\frac{1}{\sqrt{32\pi a_0^5}}\). hàm \(\psi\) sau khi chiuẩn hóa có dạng \(\psi=\frac{1}{\sqrt{\pi32.a_0^5}}x.e^{-\frac{r}{2a_0}}\)
bạn có ghi bài trên lớp phần cấu tạo chất đủ không. co mình mượn chép lại mấy bài phần đó với
A(Fe, S) ==nung==> B(Fe, S, FeS) ==HCl==> C(H2, H2S)
B(Fe, S, FeS) ==nung==> (Fe2O3, SO2)
Bằng phương pháp sơ đồ đường chéo bạn dễ dàng tính được tỉ lệ nH2/nH2S = 1/3
Mà nH2 + nH2S = V
=> nH2 = 0,25V và nH2S = 0,75V
Sau khi viết tất cả các phương trình phản ứng, bạn dễ dàng tính được những kết quả sau :
nFe (trong B) = nH2 = 0,25V mol => mFe = 14V g
nFeS (trong B) = nH2S = 0,75V mol => mFeS = 66V g
Phản ứng của B với O2 :
4FeS + 7O2 = 2Fe2O3 + 4SO2
0,75V....1,3125V mol
S + O2 = SO2
x.....x
Ta có 1,3125V + x = V'' => nS = x = V'' - 1,3125V
=> mS = 32V'' - 42V
mB = mFe + mS + mFeS = 14V + 32V'' - 42V + 66V = 38V + 32V'' g
b. nS = V'' - 1,3125V => V'' > 1,3125V => V''/V > 1,3125
Chọn đáp án B
Vì 1 C2H4 → 1 C2H3Cl
⇒ Ta có mPVC = 4 , 2 28 × 0,8 × 62,5 = 7,5 gam ⇒ Chọn B