K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2021

 

 

 

 

a) MN // BC => ∆AMN ∽ ∆ABC

ML // AC => ∆MBL ∽ ∆ABC và ∆AMN ∽ ∆MLB

 

 

b) ∆AMN ∽ ∆ABC có:

ˆAMNAMN^ = ˆABCABC^ˆANMANM^ = ˆACBACB^

AMABAMAB1313

 ∆MBL ∽ ∆ABC có: 

ˆMBLMBL^ = ˆBACBAC^ˆBB^ chung, ˆMLBMLB^ = ˆACBACB^

MBABMBAB2323

∆AMN ∽ ∆MLB có:

ˆMANMAN^ = ˆBMLBML^

a) ΔAMN∼ΔABC

ΔBML∼ΔBAC

b) Ta có: ΔAMN∼ΔABC(cmt)

nên \(\widehat{AMN}=\widehat{ABC}\)\(\widehat{ANM}=\widehat{ACB}\)\(\widehat{A}\) chung và \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}\)

Ta có: ΔBML∼ΔBAC(cmt)

nên \(\widehat{BML}=\widehat{BAC}\)\(\widehat{BLM}=\widehat{BCA}\)\(\widehat{B}\) chung và \(\dfrac{BM}{BA}=\dfrac{ML}{AC}=\dfrac{BL}{BC}\)

27 tháng 11 2017

Các bạn làm nhanh hộ mik nha! Thank you mấy bạn nhiều lắm!

30 tháng 3 2018

A B E C F

a) Xét \(\Delta\)EBA và \(\Delta\)ABC có:

\(\widehat{BEA}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{B}\) là góc chung

\(\Rightarrow\) \(\Delta\)EBA đòng dạng vs \(\Delta\)ABC (g - g)

\(\Rightarrow\) \(\dfrac{BE}{AB}=\dfrac{AB}{BC}\)

\(\Rightarrow\) AB2 = BE . BC

b) Trong \(\Delta\)ABC vuông tại A có:

BC2 = AB2 + AC2

= 32 . 42

= 25

\(\Rightarrow\) BC = \(\sqrt{25}\) = 5(cm)

Vì: AB2 = BC.BE (cmt)

\(\Rightarrow\) BE = \(\dfrac{AB^2}{BC}\)

= \(\dfrac{3^2}{5}\) = 1.8(cm)

Xét \(\Delta\)BEA vuông tại E có:

AE2 = AB2 + BE2

= 32 + 1.82

= \(\dfrac{306}{25}\)

\(\Rightarrow\)AE = \(\sqrt{\dfrac{306}{25}}\) = \(\dfrac{3\sqrt{34}}{5}\)(cm)

c) Trong \(\Delta\)ABC có BF là tia phân giác của góc B

\(\Rightarrow\) \(\dfrac{AF}{AB}=\dfrac{CF}{BC}\)

Áp dụng t/chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{AF}{AB}=\dfrac{CF}{BC}\)\(=\dfrac{AF+CF}{AB+BC}=\dfrac{AC}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AF}{3}=\dfrac{1}{2}\Rightarrow AF=1.5\left(cm\right)\)

Trong \(\Delta\)ABF vuông tại A có:

BF2 = AB2 + AF2

= 32 + 1.52

= 11.25

\(\Rightarrow\) BF = \(\sqrt{11.25}\) = \(\dfrac{3\sqrt{5}}{2}\)(cm)

3 tháng 3 2020

A B C O D H P Q I

a. Xét tứ giác ADOH có:\(\widehat{ODA}=90^o;\widehat{DAH}=90^o;\widehat{OHA}=90^o\)

\(\Rightarrow\) ADOH là hình chữ nhật ( tứ giác có 3 góc vuông )

b. Ta có: P là điểm đối cứng của D qua O ⇒ O là trung điểm của DP(1)

Q là điểm đối xứng của H qua O ⇒ O là trung điểm của QH(2)

Ta có: \(AB\perp AC;QH\perp AC̸\) ⇒ AB//QH

Lại có: DB//QO;DB⊥DP⇒QH⊥DP(3)

Từ(1),(2),(3)⇒Tứ giác QDHP là hình thoi(Tứ giác có 2 đường chéo vuông góc và cắt nhau tại trung điểm mỗi đường)

31 tháng 5 2020

Phần a là HBA ~ ABC chứ nhỉ?

a, Xét tam giác HBA và tam giác ABC có:

góc BHA = góc BAC = 90o (ABC vg tại A và AH là đường cao)

góc B chung

\(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)ABC (gg)

b, Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt) (1)

Tương tự ta cx có: \(\Delta\)HAC ~ \(\Delta\)ABC (2)

Từ (1) và (2) \(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)HAC

\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay AH2 = CH . BH (đpcm)

\(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\) hay AB2 = BC . BH (đpcm)

\(\Delta\)HAC ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AC}{BC}=\frac{HC}{AC}\) hay AC2 = BC . HC (đpcm)

c, Xét tam giác ABC vg tại A có: BA\(\perp\)CA

\(\Rightarrow\) BC2 = AB2 + AC2 (định lí Pytago)

BC2 = 152 + 202

BC2 = 625

BC = \(\sqrt{625}\) = 25 (cm)

\(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\)

hay \(\frac{15}{25}=\frac{BH}{15}\) \(\Rightarrow\) BH = \(\frac{15^2}{25}\) = 9 (cm)

Vì BH = 9 cm nên CH = 25 - 9 = 16 (cm)

\(\Delta\)HBA ~ \(\Delta\)HAC (cmt)

\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay \(\frac{AH}{16}=\frac{9}{AH}\)

\(\Rightarrow\) \(AH^2=16\cdot9=144\)

\(\Rightarrow\) \(AH=\sqrt{144}=12\) (cm)

d, Xét tam giác ABC có: BD là tia p/g của góc ABC (gt)

\(\Rightarrow\) \(\frac{AD}{AB}=\frac{CD}{BC}\) (t/c đường p/g của tam giác)

hay \(\frac{20-CD}{15}=\frac{CD}{25}\)

\(\Leftrightarrow\) \(\frac{5\left(20-CD\right)}{75}=\frac{3CD}{75}\)

\(\Rightarrow\) 5(20 - CD) = 3CD

\(\Leftrightarrow\) 100 - 5CD = 3CD

\(\Leftrightarrow\) 3CD + 5CD = 100

\(\Leftrightarrow\) 8CD = 100

\(\Leftrightarrow\) CD = 12,5 (cm)

\(\Rightarrow\) AD = 20 - 12,5 = 7,5 (cm)

e, Ko thể có 2 điểm H được nên mk gọi D vuông góc với BC tại M nha!

Xét tam giác CMD và tam giác CAB có:

góc CMD = góc CAB = 90o (DM \(\perp\) BC và \(\Delta\)ABC vg tại A theo gt)

góc C chung

\(\Rightarrow\) \(\Delta\)CMD ~ \(\Delta\)CAB (gg)

\(\Rightarrow\) \(\frac{CM}{CA}=\frac{CD}{CB}\) hay CM . CB = CD . CA (đpcm)

Chúc bn học tốt!! (Dài quá :vvv)

a) Xét ΔHBA và ΔABC có

\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)

\(\widehat{ABC}\) chung

Do đó: ΔHBA∼ΔABC(g-g)(1)

Xét ΔHAC và ΔABC có

\(\widehat{AHC}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ACB}\) chung

Do đó: ΔHAC∼ΔABC(g-g)(2)

Từ (1) và (2) suy ra ΔHBA∼ΔHAC(đpcm)

b) Ta có: ΔHBA∼ΔABC(cmt)

\(\frac{HB}{AB}=\frac{BA}{BC}=\frac{HA}{AC}=k_1\)(tỉ số đồng dạng)

hay \(AB^2=BC\cdot BH\)(đpcm)

Ta có: ΔHAC∼ΔABC(cmt)

\(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}=k_2\)(tỉ số đồng dạng)

hay \(AC^2=BC\cdot HC\)(đpcm)

Ta có: ΔHBA∼ΔHAC(cmt)

\(\frac{HB}{HA}=\frac{HA}{HC}=\frac{BA}{AC}=k\)(tỉ số đồng dạng)

hay \(HA^2=HB\cdot HC\)(đpcm)

c) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(BC^2=15^2+20^2=625\)

hay \(BC=\sqrt{625}=25cm\)

Ta có: \(AB^2=BC\cdot BH\)(cmt)

\(15^2=25\cdot BH\)

\(BH=\frac{15^2}{25}=\frac{225}{25}=9cm\)

Ta có: \(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}\)(cmt)

\(\frac{HA}{15}=\frac{20}{25}\)

\(HA=\frac{15\cdot20}{25}=\frac{300}{25}=12cm\)

Vậy: BC=25cm; BH=9cm; HA=12cm

d) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\frac{AD}{AB}=\frac{CD}{CB}\)(tính chất đường phân giác của tam giác)

hay \(\frac{AD}{15}=\frac{CD}{25}\)

Ta có: AD+CD=AC(D nằm giữa A và C)

hay AD+CD=20cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{AD}{15}=\frac{CD}{25}=\frac{AD+CD}{15+25}=\frac{20}{40}=\frac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\frac{AD}{15}=\frac{1}{2}\\\frac{CD}{25}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\frac{15\cdot1}{2}=7,5cm\\CD=\frac{25\cdot1}{2}=12,5cm\end{matrix}\right.\)

Vậy: AD=7,5cm; CD=12,5cm

e) Đề sai rồi bạn

25 tháng 3 2018

A B C H I D E K

a) Xét \(\Delta ABC\) có :

- BD là tia phân giác của \(\widehat{ABC}\)

=> \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)

=> \(\dfrac{DA}{DC}=\dfrac{AB}{BC}\left(1\right)\)

- CE là tia phân giác của \(\widehat{ACB}\)

=> \(\dfrac{EA}{AC}=\dfrac{EB}{BC}\)

=> \(\dfrac{EA}{EB}=\dfrac{AC}{BC}\left(2\right)\)

Từ (1) và (2) ta có : \(\dfrac{DA}{DC}=\dfrac{EA}{EB}\left(\dfrac{AB}{BC}=\dfrac{AC}{BC}\right)\)

b) Ta có : \(\left\{{}\begin{matrix}\dfrac{DA}{DC}=\dfrac{EA}{EB}\left(cmt\right)\\\widehat{A}:chung\end{matrix}\right.\)

=> \(\Delta AED\sim\Delta ABC\)

=> \(\widehat{AED}=\widehat{ABC}\)

Mà thấy: 2 góc này ở vị trí đồng vị

=> \(DE//BC\)