Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nhá
a) Xét tam giác BAH và tam giác ABC , có :
A^ = H^ = 90O
B^ : góc chung
=> tam giác HAB ~ tam giác ACB ( g.g)
b) ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 122 + 166 = BC2
=> BC2 = 400
=> BC = 20 cm
Vì tam giác ACB ~ tam giác HAB , nên ta có :
\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)
=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)
=> AH = 9,6 cm
Ta có : AD là phân giác của A^
=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)
=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)
=> 16BD = 240 - 12BD
=> 28BD = 240
=> BD = 8,5 cm
hình bạn tự vẽ ak nghen!!!
a)
Xét tam giác ABC và HBA có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
A B C H I D E K
a) Xét \(\Delta ABC\) có :
- BD là tia phân giác của \(\widehat{ABC}\)
=> \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)
=> \(\dfrac{DA}{DC}=\dfrac{AB}{BC}\left(1\right)\)
- CE là tia phân giác của \(\widehat{ACB}\)
=> \(\dfrac{EA}{AC}=\dfrac{EB}{BC}\)
=> \(\dfrac{EA}{EB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) ta có : \(\dfrac{DA}{DC}=\dfrac{EA}{EB}\left(\dfrac{AB}{BC}=\dfrac{AC}{BC}\right)\)
b) Ta có : \(\left\{{}\begin{matrix}\dfrac{DA}{DC}=\dfrac{EA}{EB}\left(cmt\right)\\\widehat{A}:chung\end{matrix}\right.\)
=> \(\Delta AED\sim\Delta ABC\)
=> \(\widehat{AED}=\widehat{ABC}\)
Mà thấy: 2 góc này ở vị trí đồng vị
=> \(DE//BC\)