Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi M - 1 + 2 t ; t ; 2 + t ∈ ∆ ⇒ N 2 x A - x M ; 2 y A - y M ; 2 z A - z M
Suy ra N 3 - 2 t ; - 2 - t ; 2 - t , do N ∈ P ⇒ 3 - 2 t - 2 - t - 4 + 2 t + 5 = 0 ⇒ t = 2
⇒ M 3 ; 2 ; 4 ⇒ A M → = 2 ; 3 ; 2 = u ∆ → .
Kiểm tra ta thấy d cắt (P)
Đường thẳng cần tìm là giao tuyến của mặt phẳng α với mặt phẳng (P)
Trong đó mặt phẳng α đi qua điểm A và vuông góc với đường thẳng AH, điểm H là hình chiếu của A trên đường thẳng d
Ta tìm được tọa độ điểm H(-1;0;2) => phương trình mp
đường thẳng ∆ có một VTVP là
Chọn A.
Tọa độ điểm là nghiệm của hệ
Gọi Vì
Từ
Ta có
Giải hệ trên ta được Vậy a + b + c = 4.
Chọn C.
Đường thẳng d đi qua M ( 0;-1;1 ) và có vectơ chỉ phương là u → 1 ; 2 ; 0 . Do d ⊂ P nên u → . n → = 0 ⇔ a + 2b = 0 nên a = -2b
Đáp án D
Đáp án D.
Gọi M’ là điểm đối xứng của M qua đường thẳng d : x 1 = y − 6 − 4 ; z − 6 − 3 .
Gọi H t ; 6 − 4 t ; 6 − 3 t ∈ d là hình chiếu vuông góc của M trên d
Ta có: M H → = t ; t − 4 t ; 3 − 3 t , cho M H → . u d → = 1 + 16 t − 4 + 9 t − 9 = 0 ⇔ t = 1 2 ⇒ H 1 2 ; 4 ; 9 2
Khi đó M ' 1 ; 3 ; 6 suy ra vecto chỉ phương cuả A C → là M ' N → = 0 ; − 2 − 6 = − 2 0 ; 1 ; 3 .