K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

Ta có y = 0 không phải là nghiệm, còn y = -2 là nghiệm của BPT.

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

2 tháng 9 2017

X=2007 đúng 100%

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

27 tháng 2 2020

bạn là nam hay nữ zở

27 tháng 2 2020

bn nhìn tên rồi đoán nha bn

16 tháng 3 2020

a, +) Thay y = -2 vào phương trình trên  ta có :

( -2 + 1 )2 = 2 . ( -2 ) + 5

1              =              1

Vậy y = -2 thỏa mãn phương trình trên

 +) Thay y = 1 vào phương trình trên , ta có :

( 1 + 1)= 2 . 1 + 5

4            =           7

Vậy y = 1 thỏa mãn phương trình trên

b, +) Thay x =-3 vaò phương trình trên , ta có :

( -3 + 2 )2 = 4 . ( -3 ) + 5

2               =            -7

Vậy x = -3 không thỏa mãn phuong trình trên 

+) Thay x = 1 vào phương trình trên , ta có :

( 1 + 2 )2 = 4 . 1 + 5

9             =            9

Vậy x = 1 thỏa mãn phương trình trên

c, +) Thay t = -1 vào phương trình , ta có :

[ 2 . ( -1 ) + 1 ]2 = 4 . ( -1 ) + 5

1                       =               1

Vậy t = -1 thỏa mãn phương trình trên 

+) Thay t = 3 vào phương trình trên , ta có :

( 2 . 3 + 1 )2 = 4 . 3 + 5

49                =        17

Vậy t = 3 không thỏa mãn phương trình trên

d, +) Thay z = -2 vào phương trình trên , ta có :

( -2 + 3 )2 = 6 . ( -2 ) + 10

1              =             -2

Vậy z = -2 không thỏa mãn phương trình trên

+) Thay z = 1 vào phương trình trên , ta có :

( 1 + 3 )2 = 6 . 1 + 10

16           =            16

Vậy z =1 thỏa mãn phương trình trên 

25 tháng 2 2021

Ta có: \(\frac{xy+1}{x+y}\ge\frac{3y+1}{x+y}\ge\frac{3y+1}{2y}>\frac{3y}{2y}=\frac{3}{2}\)( mâu thuẫn với gt)

giả sử \(a\le2\Rightarrow a\in\left\{1;2\right\}\)

+ Với a=1 \(\Rightarrow M=\frac{y^3+1}{y^3+1}=1\)

+ Với a=2 \(\Rightarrow M=\frac{8y^3+1}{y^3+8}\)

Từ đk \(\frac{xy+1}{x+y}=\frac{2y+1}{y+2}< \frac{3}{2}\Rightarrow b< 4\)

=> \(b\in\left\{1;2;3\right\}\)

+ Với b=1 \(\Rightarrow M=\frac{9}{9}=1\)

+ Với  b=2 \(\Rightarrow M=\frac{8.8+1}{8+8}=\frac{65}{16}\)

+ vỚI b=3 \(\Rightarrow M=\frac{8.27+1}{27+8}=\frac{217}{35}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\) hoặc ngược lại.

Câu 1: 

A: Hai phương trình này tương đương vì có chung tập nghiệm S={-3}

B: Hai phương trình này không tương đương vì hai phương trình này không có chung tập nghiệm

Câu 2: 

\(\left(y-2\right)^2=y+4\)

\(\Leftrightarrow y^2-4y+4-y-4=0\)

\(\Leftrightarrow y\left(y-5\right)=0\)

=>y=0 hoặc y=5