K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

ST2 kém ST1 1 hàng, ST3 kém ST2 1 hàng mà tổng 3 số là 2241 nên ST1 đến hàng nghìn => STN có dạng abcd ST2 là acd, ST3 là ad
abcd+acd+ad=2241 => d=7; a=1 hoặc 2
*a=1 => 1bc7+1c7+17=2241
100xb+20xc=1110
10xb+2xc=111 mà b lớn nhất là 9 => 2xc=21 => c>10(loại)
* a=2 => 2bc7+2c7+27=2241 => 100xb+20xc=0 => b=c=0
Vậy ST1 là 2007, St2 là 207, ST3 là 27

31 tháng 12 2019

ST2 kém ST1 1 hàng, ST3 kém ST2 1 hàng mà tổng 3 số là 2241 nên ST1 đến hàng nghìn => STN có dạng abcd ST2 là acd, ST3 là ad abcd+acd+ad=2241 => d=7; a=1 hoặc 2 *a=1 => 1bc7+1c7+17=2241 100xb+20xc=1110 10xb+2xc=111 mà b lớn nhất là 9 => 2xc=21 => c>10(loại) * a=2 => 2bc7+2c7+27=2241 => 100xb+20xc=0 => b=c=0 Vậy ST1 là 2007, St2 là 207, ST3 là 27

28 tháng 7 2016

1804;180;18 và 1

27 tháng 4 2020

Bài giải: Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.

Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:

abcd + abc + ab + a = 2003.

Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)

Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:

1111 + bbb + cc + d = 2003.

bbb + cc + d = 2003 - 1111

bbb + cc + d = 892 (**)

b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

Thay b = 8 vào (**) ta được:

888 + cc + d = 892

cc + d = 892 - 888

cc + d = 4

Từ đây suy ra c chỉ có thể bằng 0 và d = 4.

Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.

Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)

Bài giải: Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.

Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:

abcd + abc + ab + a = 2003.

Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)

Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:

1111 + bbb + cc + d = 2003.

bbb + cc + d = 2003 - 1111

bbb + cc + d = 892 (**)

b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

Thay b = 8 vào (**) ta được:

888 + cc + d = 892

cc + d = 892 - 888

cc + d = 4

Từ đây suy ra c chỉ có thể bằng 0 và d = 4.

Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.

Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)

13 tháng 9 2019

Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a.

Theo bài ra ta có phép tính:

abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (1)
Từ phép tính (1) ta có a < 2, nên a = 1. Thay a = 1 vào (1) ta được :
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (2)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (2) ta được :
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại : 1804 + 180 + 18 + 1 = 2003 

vậy 4 số cần tìm là : 1084;180;18;1

7 tháng 5 2016

Nếu số thứ tư là số có một chữ số thì số thứ ba có hai chữ số, số thứ hai có ba chữ số và số thứ tư có bốn chữ số.

Vì tổng 4 số tự nhiên bằng 2003 nên số thứ nhất chỉ có thể là số có 4 chữ số.

Gọi số thứ nhất là abcd. Theo bài ra ta có:

abcd + abc + ab + a = 2003 nên a = 1

=> 1000 + bcd + 100 + bc + 10 + b + 1 = 2003

=> bcd + bc + b = 892 nên b = 8

=> 800 + cd + 80 + c + 8 = 892

=> cd +  c = 4

=> c = 0 và d = 4

Số phải tìm là: 1804; 180; 18; 1

Nếu số thứ tư là số có một chữ số thì số thứ ba có hai chữ số, số thứ hai có ba chữ số và số thứ tư có bốn chữ số.

Vì tổng 4 số tự nhiên bằng 2003 nên số thứ nhất chỉ có thể là số có 4 chữ số.

Gọi số thứ nhất là abcd. Theo bài ra ta có:

abcd + abc + ab + a = 2003 nên a = 1

=> 1000 + bcd + 100 + bc + 10 + b + 1 = 2003

=> bcd + bc + b = 892 nên b = 8

=> 800 + cd + 80 + c + 8 = 892

=> cd +  c = 4

=> c = 0 và d = 4

Số phải tìm là: 1804; 180; 18; 1

nha bạn 

26 tháng 8 2021

số thứ 1 là 1804

số thứ hai là 180

số thứ ba là 18

số thứ tư là 1

    - HT -