Tìm 4 số tự nhiên có tổng bằng 2003. Biết rằng nếu xóa bỏ chữ số hàng đơn vị của s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nếu số thứ tư là số có một chữ số thì số thứ ba có hai chữ số, số thứ hai có ba chữ số và số thứ tư có bốn chữ số.

Vì tổng 4 số tự nhiên bằng 2003 nên số thứ nhất chỉ có thể là số có 4 chữ số.

Gọi số thứ nhất là abcd. Theo bài ra ta có:

abcd + abc + ab + a = 2003 nên a = 1

=> 1000 + bcd + 100 + bc + 10 + b + 1 = 2003

=> bcd + bc + b = 892 nên b = 8

=> 800 + cd + 80 + c + 8 = 892

=> cd +  c = 4

=> c = 0 và d = 4

Số phải tìm là: 1804; 180; 18; 1

nha bạn 

26 tháng 8 2021

số thứ 1 là 1804

số thứ hai là 180

số thứ ba là 18

số thứ tư là 1

    - HT -

28 tháng 7 2016

1804;180;18 và 1

8 tháng 9 2021

tham khảo ở đây

Câu hỏi của nguyễn hoàng mỹ dân - Toán lớp 5 - OLM
8 tháng 9 2021

ai giúp bài này đii cần gấp 

7 tháng 9 2021

Bài giải: Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.

 

Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:

abcd + abc + ab + a = 2003.

Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)

Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:

1111 + bbb + cc + d = 2003.

bbb + cc + d = 2003 - 1111

bbb + cc + d = 892 (**)

b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

Thay b = 8 vào (**) ta được:

888 + cc + d = 892

cc + d = 892 - 888

cc + d = 4

Từ đây suy ra c chỉ có thể bằng 0 và d = 4.

Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.

Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)

giải thế này đúng ko các cậu 

7 tháng 9 2021

nếu cậu ko trả lời thì mong cậu đừng spam 

28 tháng 7 2018

Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.

Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. 

Theo bài ra ta có phép tính:

abcd + abc + ab + a = 2003.

Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)

Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được :

1111 + bbb + cc + d = 2003.

bbb + cc + d = 2003 - 1111

bbb + cc + d = 892 (**)

b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

Thay b = 8 vào (**) ta được :

888 + cc + d = 892

cc + d = 892 - 888

cc + d = 4

Từ đây suy ra c chỉ có thể bằng 0 và d = 4.

Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.

Thử lại : 1804 + 180 + 18 + 1 = 2003 (đúng)

17 tháng 11 2021

Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.

Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:

abcd + abc + ab + a = 2003.

Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)

Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:

1111 + bbb + cc + d = 2003.

bbb + cc + d = 2003 - 1111

bbb + cc + d = 892 (**)

b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

Thay b = 8 vào (**) ta được:

888 + cc + d = 892

cc + d = 892 - 888

cc + d = 4

Từ đây suy ra c chỉ có thể bằng 0 và d = 4.

Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.

Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)

Bài giải :Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.

Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:

abcd + abc + ab + a = 2003.

Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)

Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:

1111 + bbb + cc + d = 2003.

bbb + cc + d = 2003 - 1111

bbb + cc + d = 892 (**)

b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

Thay b = 8 vào (**) ta được:

888 + cc + d = 892

cc + d = 892 - 888

cc + d = 4

Từ đây suy ra c chỉ có thể bằng 0 và d = 4.

Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.

Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)  Chúc bn học tốt nha

7 tháng 8 2021

Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 chữ số bằng 2003. Nếu số thứ nhăt có ít hơn 4 chữ số thì sẽ không tồn tại số thứ 4. Vậy số thứ nhất phải có 4 chữ số. Gọi số thứ nhất là abcd (a>0, a,b,c,d < 10) . Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là: abc; ab; a. Theo bài ta có phép tính:

abcd + abc + ab + a = 2003.

Theo phân tích cấu tạo số ta có: aaaa + bbb + cc + d = 2003 (1)

Từ (1) ta có a < 2 nên a = 1. Thay a = 1 vào (1) ta được:

1111 + bbb + cc + d = 2003

bbb + cc + d = 2003 - 1111

bbb + cc +d = 892 (2)

b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d < 892; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

Thay b bằng 8 vào (2) ta được:

888 + cc + d = 892

cc + d = 892 - 888

cc + d = 4

Từ đây suy ra c chỉ có thể bằng 0 và d = 4

Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1

Thử lại : 1804 + 180 + 18 + 1 = 2003 (đúng)

13 tháng 9 2023

Theo đề bài số thứ nhất phải là số có 4 chữ số

Đặt số thứ nhất là \(\overline{abcd}\) ta có

\(\overline{abcd}+\overline{abc}+\overline{ab}+a=2003\) 

\(\Rightarrow a\le2\) và \(\overline{abcd}+\overline{abc}< 2003\)

Nếu \(a=2\)

\(\Rightarrow\overline{abcd}+\overline{abc}=\overline{2bcd}+\overline{2bc}=2000+\overline{bcd}+200+\overline{bc}=\)

\(=2200+\overline{bcd}+\overline{bc}>2003\)

\(\Rightarrow a< 2\Rightarrow a=1\)

\(\Rightarrow\overline{1bcd}+\overline{1bc}+\overline{1b}+1=2003\)

\(\Rightarrow1000+\overline{bcd}+100+\overline{bc}+10+b+1=2003\)

\(\Rightarrow\overline{bcd}+\overline{bc}+b=892\Rightarrow b\le8\)

Nếu \(b=7\)

\(\Rightarrow\overline{7cd}+\overline{7c}+7=892\)

\(\Rightarrow700+\overline{cd}+70+c+7=892\)

\(\Rightarrow\overline{cd}+c=115\Rightarrow c=9\) 

\(\Rightarrow\overline{9d}+9=115\Rightarrow90+d+9=115\Rightarrow d=16\) vô lý

\(\Rightarrow b>7\Rightarrow7< b\le8\Rightarrow b=8\)

\(\Rightarrow\overline{8cd}+\overline{8c}+8=892\)

\(\Rightarrow800+\overline{cd}+80+c+8=892\)

\(\Rightarrow\overline{cd}+c=4\Rightarrow c=0\)

\(\Rightarrow\overline{cd}+c=d=4\)

\(\Rightarrow\overline{abcd}=1804\)

 

 

 

 

 

13 tháng 11 2023

ai raid ko

22 tháng 5 2021

Bài giải:

Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.

Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:

abcd + abc + ab + a = 2003.

Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)

Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:

1111 + bbb + cc + d = 2003.

bbb + cc + d = 2003 - 1111

bbb + cc + d = 892 (**)

b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

Thay b = 8 vào (**) ta được:

888 + cc + d = 892

cc + d = 892 - 888

cc + d = 4

Từ đây suy ra c chỉ có thể bằng 0 và d = 4.

Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.