Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tứ giác ABCD có :
^A + ^B + ^C + ^D = 3600 ( đ.lí )
Lại có : ^A. ^B, ^C, ^D tỉ lệ thuận với 5, 8, 13, 10
=> ^A/5 = ^B/8 = ^C/13 = ^D/10 và ^A + ^B + ^C + ^D = 3600
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
^A/5 = ^B/8 = ^C/13 = ^D/10 = ( ^A + ^B + ^C + ^D )/( 5 + 8 + 13 + 10 ) = 360/36 = 10
=> ^A = 500
^B = 800
^C = 1300
^D = 1000
Em thử thôi nha, dốt hình lắm:( TRình bày khá lủng củng, chị thông cảm ạ, có khi em sắp xếp thứ tự các đỉnh tương ứng của hai tam giác bằng nhau sai đấy)
a) Dễ chứng minh tam giác AED = tam giác AEB (g.c.g)
Suy ra AD = AB suy ra tam giác ADB cân tại A. Mặt khác dễ thấy A, E, O thẳng hàng mà AE là phân giác góc A nên AO cũng là phân giác góc A. Mặt khác tam giác ADB cân tại A có đường phân giác AO xuất phát từ đỉnh nên đồng thời cũng là đường trung trực do đó OA vuông góc với AE và OD = OB (1). Tức là AE vuông góc với DB.
b) Do tam giác AED = tam giác AEB nên ^ADE = ^ABE
Mặt khác ^BDE = ^ABD (so le trong, do AB// DE)
Từ (2) và (3) suy ra ^DBE = ^ADB, mà hai góc này ở vị trí so le trong nên AD//BE
Từ đây ta có AD // BE và AB // DE nên theo tính chất đoạn chắn suy ra AD = BE
c) Do AD // BE và AB // DE nên theo tính chất đoạn chắn suy ra DE = AB(4). Ta cần chứng minh AB = EC.(5)
Điều này là hiển nhiên vì theo đề bài AE // BC và AB// EC (do giả thiết AB // DC và E thuộc DC) nên nó đúng theo tính chất đoạn chắn.
Do đó (5) đúng suy ra DE = EC (cùng bằng AB) hay E là trung điểm CD.
Còn lại em bí
A B H D C 1 2
a,kẻ \(AH\bot DC(H\in BC)\)
cm được ABHD là hình chữ nhật suy ra AB=HD=2cm
Mà DH+HC=DC
\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\)
\(\Rightarrow \Delta DBC\) cân tại B
\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)
\(\Rightarrow\Delta DBC \) vuông cân tại B
b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)
\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D
c,Ta tính được BH=DH=CH=2cm
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)
bạn dùng tính chất đương phân giác rồi suy ra tỉ leejj bằng nhau
A D B C K I 1 1 2 1
a) Vì ABCD là hình bình hành ( GT )
\(\Rightarrow AD//BC\left(Tc\right)\)
\(\Rightarrow\widehat{KAI}=\widehat{AIB}\)( 2 góc so le trong )
Mà \(\widehat{KAI}=\widehat{BAI}\)( vì AI là phân giác của góc BAD )
\(\Rightarrow\widehat{AIB}=\widehat{BAI}\)
Xét \(\Delta ABI\)có : \(\widehat{AIB}=\widehat{BAI}\)
\(\Rightarrow\Delta ABI\) cân tại B ( Dấu hiệu nhận biết )
b) Ta có : CK là phân giác của góc DCI ( GT )
\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{DCI}}{2}\left(1\right)\)
AI là phân giác của góc BAK ( GT )
\(\Rightarrow\widehat{BAI}=\widehat{A_1}=\frac{\widehat{BAK}}{2}\left(2\right)\)
Mà \(\widehat{BAK}=\widehat{DCI}\) ( ABCD là hình bình hành ) (3)
Từ ( 1 ) ,(2 ) ,( 3)
\(\Rightarrow\widehat{BAI}=\widehat{C_2}\)
Mà \(\widehat{BAI}=\widehat{BIA}\)( chứng minh trên)
\(\Rightarrow\widehat{BIA}=\widehat{C_2}\)
c) Bạn tự làm nốt nha !
Vì AB//CD
=> A + D = 180° ( trong cùng phía)
Mà A = 3D
=> 3D + D = 180°
=> 4D = 180°
=> D = 45°
=> A = 180° - 45° = 135°
Vì ABCD là hình thang cân
=> A = B = 135°
=> C = D = 45°
a.vì tứ giác ABCD là hình bình hành
suy ra AB//CD, AB = CD
vì AB = CD mà M, N lần lượt là trung điểm AB, CD
suy ra AM = CN
mà AM//CN (M, N thuộc AB, CD) và AM = CN
\(\Rightarrow\) tứ giác AMCN là hình bình hành
b.MF//AE, M là trung điểm AB nên MF là đường trung bình của tam giác
Suy ra F là trung điểm của BE
c.vì AMCN là hình bình hành
suy ra AN//CM
xét tam giác ABE có
MF//AE, M là trung điểm AB
suy ra MF là đường trung bình của tam giác
suy ra F là trung điểm BE
chứng minh tương tự với tam giác CDF, ta được E là trung điểm DF
từ đó suy ra DE = EF = FB
a) Xét hình bình hành ABCD có:
AB=CD => AM=CN (1)
AB//CD => AM//CN (2)
Từ (1) và (2) => Tứ giác AMCN là hình bình hành (dấu hiệu 3)
b) Ta có: MF//AE (do CM//AN)
Xét tam giác BEA có:
MF//AE
AM=MB
=> MF là đường trung bình của tam giác BEA
=> EF=FB hay F là trung điểm của BE
c) Ta có: CF//NE (do CM//AN)
Xét tam giác DFC có:
DN=NC
CF//NE
=> NE là đường trung bình của tam giác DFC
=> DE=EF
mà EF=FB nên DE=EF=FB
D ^ = 50 0 , C ^ = 100 0