Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.
Trước hết ta thu gọn đa thức
A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3
Thay x = 5; y = 4 ta được:
A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy A = 129 tại x = 5 và y = 4.
b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.
Thay x = -1; y = -1 vào biểu thức ta được:
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)
=\(x^2+2xy+y^3\)
\(thếx=5;y=4\) \(ta\) \(có\)
= \(5^2+2.5.4+4^3\)
= 25 + 40 + 64
=129
b.
\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)
thế \(x=-1;y=-1\) ta có:
(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)
= 1 - 1.1 +1.1 - 1.1 +1.1
= 1-1+1-1+1
= 1
a) \(x^2\) \(+2xy-3x^3\) \(+2y^3+3x^3-y^3\)
\(=x^2+2xy-\left(3x^3-3x^3\right)+\left(2y^3-y^3\right)\)
\(=x^2+2xy+y^3\)
Tại \(x=5;y=4\) thì:
\(5^2+2.5.4+4^3\)
\(=129\)
Vậy ....
b) Tại \(x=-1;y=-1\):
\(\left(-1\right).\left(-1\right)-\left(-1\right)^2.\left(-1\right)^2+\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)
\(=1\)
Vậy ....
a, x2+2xy-3x3+2y3+3x3-y3
= x2+2xy+(-3x3+3x3)+(2y3-y3)
= x2+2xy+y3
Thay x=5 và y=4 vào đa thức x2+2xy+y3, ta có
52+2.5.4+43=129
Vậy giá trị của đa thức x2+2xy+y3 tại x=5 và y=4 là 129
b, xy- x2y2+x4y4-x6y6+x8y8
= xy-(xy)2+(xy)4-(xy)6+(xy)8
Ta có: xy=(-1)(-1)=1
Thay xy vào đa thức xy-(xy)2+(xy)4-(xy)6+(xy)8 ta có :
1-12+14-16+18=1-1+1-1+1=1
Vậy giá trị của biểu thức xy- x2y2+x4y4-x6y6+x8y8 tại x=-1 và y=-1 là 1
a, Thay x= -2 và y = -1 vào đa thức
Ta có : 5xy\(^2\) + 2xy - 3xy\(^2\)
= ( 5xy\(^2\) - 3xy\(^2\) ) + 2xy
= 2xy\(^2\) + 2xy
= 2 . ( -2 ) . ( -1 ) + 2 . ( -2 ) . ( -1 )
= 4 + 4
= 8
Vậy 8 là giá trị của đa thức trên
a)
Ta có \(xy+x^2y^2+x^3y^3+...+x^{10}y^{10}\\ =\left(xy+x^3y^3+x^5y^5+...+x^9y^9\right).\left(x^2y^2+x^4y^4+x^6y^6+...+x^{10}y^{10}\right)\)
Thay x= -1 và y= 1 vào biểu thức trên ta được\(\left(-1\right)1+\left(-1\right)^21^2+...+\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)1+\left(-1\right)^31^3+...+\left(-1\right)^91^9\right].\left[\left(-1\right)^21^2+\left(-1\right)^41^4+...+\left(-1\right)^{10}1^{10}\right]\\ =\left(-1-1-...-1\right)+\left(1+1+...+1\right)\\ =-5+5=0\)
b)
Ta có:\(xyz+x^2y^2z^2+x^3y^3z^3+...+x^{10}y^{10}z^{10}\\ =\left(xyz+x^3y^3z^3+x^5y^5z^5+...+x^9y^9z^9\right).\left(x^2y^2z^2+x^4y^4z^4+x^6y^6z^6+...+x^{10}y^{10}z^{10}\right)\)
Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được\(\left(-1\right)\left(-1\right)1+\left(-1\right)^2\left(-1\right)^21^2+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)\left(-1\right)1+\left(-1\right)^3\left(-1\right)^31^3+...+\left(-1\right)^9\left(-1\right)^91^9\right].\left[\left(-1\right)^2\left(-1\right)^21^2+\left(-1\right)^4\left(-1\right)^41^4+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\right]\\ =\left(1+1+...+1\right)+\left(1+1+...+1\right)\\ =5+5=10\)
Ta có xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)
Thay x= -1 và y= 1 vào biểu thức trên ta được(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0
b)
Ta có:xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)
Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được(−1)(−1)1+(−1)2(−1)212+...+(−1)10(−1)10110=[(−1)(−1)1+(−1)3(−1)313+...+(−1)9(−1)919].[(−1)2(−1)212+(−1)4(−1)414+...+(−1)10(−1)10110]=(1+1+...+1)+(1+1+...+1)=5+5=10
5rxdjexjgntrujnxgr6jexs6ue6thfydjytudcjxtyu45yuej8tuxr5ts
y1 và y2 lần lượt bằng 8 và 6
còn x1, x2 lần lượt bằng -4 và -10
tick nhóe!
ahihi
a) x^2 -5x tại x=1,x=-1,x=1 phần 2
Thay x=1 =>\(1^2-5.1=1-5=-4\)
Thay \(x=-1\Rightarrow\left(-1\right)^2-5.\left(-1\right)=1+5=6\)
Thay \(x=\frac{1}{2}\Rightarrow\left(\frac{1}{2}\right)^2-5\left(\frac{1}{2}\right)=\frac{1}{4}-\frac{5}{2}=-\frac{9}{4}\)
b)3x^2-xy tại x= -3,y=-5
Thay \(x=-3;y=-5\Rightarrow3.\left(-3\right)^2-\left(-3\right).\left(-5\right)=3.9-15=12\)
c)5-xy^3 tại x=1,y=-3
\(Thay...x=1;y=-3\Rightarrow5-1.\left(-3\right)^3=5-1.\left(-27\right)=5+27=32\)
d)x^5-5 tại x=1,-1
\(Thay..x=1\Rightarrow1^5-5=1-5=-4\)
\(Thay..x=-1\Rightarrow\left(-1\right)^5-5=-1-5=-6\)
e)x^2-3x-5 tại x=-2,y=-1
\(Thay.x=-2;y=-1\Rightarrow\left(-2\right)^2-3\left(-2\right)-5=5+6-5=6\)
g)x^2y^2+x^4y^4+x^6y^6 tại x=1,y=-1
\(Thayx=1;y=-1\Rightarrow1^2\left(-1\right)^2+1^4\left(-1\right)^4+1^6\left(-1\right)^6=1+1+1=3\)
a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)
\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)
\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)
Thay x-y+3=0 vào A
\(A=x^2.0-y.0+0-1=-1\)
b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)
\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)
Thay x-y+3=0 vào B
\(B=x^2.0-xy.0+2.0-2=-2\)
Cách 1 : Gọi B = xy – x2y2 + x4y4 – x6y6 + x8y8
Thay x = –1 ; y = –1 vào biểu thức.
B = (–1).(–1) – (–1)2.(–1)2+ (–1)4.(–1)4 – (–1)6.(–1)6 + (–1)8.(–1)8
= + 1 – 1.1 + 1.1 – 1.1+ 1.1
= 1 – 1 + 1 – 1 + 1
= 1
Cách 2: Khi x = -1, y = -1 thì x.y = (-1).(-1) = 1.
Có : B = xy – x2y2 + x4y4 – x6y6 + x8y8 = xy – (xy)2 + (xy)4 – (xy)6 + (xy)8 = 1 - 1 + 1 - 1 + 1 = 1