K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

thay m=-16;n=-4 ta được

M=-162*[-162-(-4)]*[-163-(-4)6]*[(-16)+(-4)2]

M=256*[-162-(-4)]*[-163-(-4)6]*[(-16)+16]

M=256*[-162-(-4)]*[-163-(-4)6]*0

ta thấy thừa số cuối cùng =0.mà 0 nhân với số nào cũng =0

=>M=0

10 tháng 2 2020

Xet rieng thua so \(n^2+m=-16+\left(-4\right)^2=-16+16=0\)

=> M=0

chuc ban hoc tot

10 tháng 2 2020

Cảm ơn anh nha !!:>

12 tháng 2 2017

a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.

    Tìm các giá trị của 2m+1 rồi tìm m

b) Theo đề bài => /m/<2 để /3m-1/<3

14 tháng 4 2017

a)m-1 chia hết 2m+1

suy ra 2(m-1) chia hết cho 2m+1

 \(\Rightarrow\)2m-2\(⋮\)2m+1

\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1

5 tháng 7 2019

a) Ta có: Để M là phân số <=> -n + 2 \(\ne\)0 <=> -n \(\ne\)-2 <=> n \(\ne\)2

b) Ta có :

+) n = 6 => M = \(\frac{-2}{-6+2}=\frac{-2}{-4}=\frac{1}{2}\)

+) n = 7 => M = \(\frac{-2}{-7+2}=\frac{-2}{-5}=\frac{2}{5}\)

+) n = -3 => M = \(\frac{-2}{-\left(-3\right)+2}=-\frac{2}{5}\)

c) Để M \(\in\)Z <=> -2 \(⋮\)-n + 2

<=> -n + 2 \(\in\)Ư(-2) = {1; -1; 2; -2}

Với: +)-n + 2 = 1 => -n = -1 => n = 1

+) -n + 2 = -1 => -n = -3 => n = 3

+) -n + 2 = 2 => -n = 0 => n= 0

+) -n + 2 = -2 => -n = -4 => n=  4

Vậy ...

5 tháng 7 2019

#)Giải :

a) Để M là phân số 

\(\Rightarrow-n+2\ne0\)

\(\Rightarrow n\ne-2\)

b)Thay n = 6 vào M, ta có :

\(M=\frac{-2}{-6+2}=\frac{-2}{-4}=\frac{2}{4}=\frac{1}{2}\)

Thay n = 7 vào M, ta có :

\(M=\frac{-2}{-7+2}=\frac{-2}{-5}=\frac{2}{5}\)

Thay n = - 3 vào M, ta có :

\(M=\frac{-2}{-\left(-3\right)+2}=\frac{-2}{3+2}=\frac{-2}{5}\)

c)Để M nhận giá trị nguyên 

\(\Rightarrow-2⋮-n+2\)

\(\Rightarrow-n+2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)

Nếu \(-n+2=-2\Rightarrow n=4\)

Nếu \(-n+2=-1\Rightarrow n=3\)

Nếu \(-n+2=1\Rightarrow n=1\)

Nếu \(-n+2=2\Rightarrow n=0\)

Vậy với \(n\in\left\{4;3;1;0\right\}\)thì M nhận giá trị nguyên

18 tháng 1 2017

Bài 1:

a) \(\left(x-2\right)\left(x+15\right)=0\)

\(\Rightarrow\left[\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=-15\end{matrix}\right.\)

Vậy \(x\in\left\{3;-15\right\}\)

Các phần khác làm tương tự

Bài 2:

Ta có: \(-\left(x-1\right)^2\le0\)

\(\Rightarrow M=2012-\left(x-1\right)^2\le2012\)

Vậy \(MIN_M=2012\) khi \(x=1\)

Bài 3:

Ta có: \(\left|x-3\right|\ge0\)

\(\Rightarrow N=\left|x-3\right|+10\ge10\)

Vậy \(MAX_M=10\) khi \(x=3\)

Bài 4:

Ta có: \(n-6⋮n-4\)

\(\Rightarrow\left(n-4\right)-2⋮n-4\)

\(\Rightarrow2⋮n-4\)

\(\Rightarrow n-4\in\left\{1;-1;2;-2\right\}\)

\(\left[\begin{matrix}n-4=1\\n-4=-1\\n-4=2\\n-4=-2\end{matrix}\right.\Rightarrow\left[\begin{matrix}n=5\\n=3\\n=6\\n=2\end{matrix}\right.\)

Vậy \(n\in\left\{5;3;6;2\right\}\)

Bài 5: Tương tự bài 4

18 tháng 1 2017

Bài 1:

b)\(\left(x+15\right)\left(x-12\right)=0\)

\(\Rightarrow\left[\begin{matrix}x+15=0\\x-12=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=-15\\x=12\end{matrix}\right.\)

c)\(\left(x-7\right)\left(x+19\right)=0\)

\(\Rightarrow\left[\begin{matrix}x-7=0\\x+19=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=7\\x=-19\end{matrix}\right.\)

d)\(\left(x-11\right)\left(x+5\right)=0\)

\(\Rightarrow\left[\begin{matrix}x-11=0\\x+5=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=11\\x=-5\end{matrix}\right.\)

Bài 5:

\(\frac{n-5}{n-2}=\frac{n-2-3}{n-2}=\frac{n-2}{n-2}-\frac{3}{n-2}=1-\frac{3}{n-2}\in Z\)

\(\Rightarrow3⋮n-2\Rightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)

16 tháng 1 2018

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

16 tháng 1 2018

a ) Thay m = 1 , n = 2 vào biểu thức trên ta được :

21.3- 31.42 + 41 . 52

= 2 .9 - 3 . 16 + 4 .25

= 18 - 48 + 100

= - 30 + 100

= 70