Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Rightarrow\left(x+x+x+...+x\right)+\left(1+2+3+..+100\right)=5750\Rightarrow x.100+\left(100+1\right)\cdot100:2=5750\)\
\(\Rightarrow x.100+5050=5750\Rightarrow x.100=700\Rightarrow x=7\)
b) \(\frac{x+1}{2}=\frac{8}{x+1}\Rightarrow\left(x+1\right)\left(x+1\right)=2.8\)
\(\Rightarrow\left(x+1\right)^2=16\Rightarrow\left(x+1\right)^2=4^2\)
\(\Leftrightarrow x+1=4\Rightarrow x=3\)
1.\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Leftrightarrow100x+5050=5750\)
\(\Leftrightarrow100x=5750-5050=700\)
\(\Leftrightarrow x=700:100=7\)
2. \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=16\)
\(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow\left(x+1\right)=16:2\)
\(\Leftrightarrow\left(x+1\right)=8\)
\(\Leftrightarrow x=8-1=7\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)
\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)
\(\left(x\cdot100\right)+101\cdot50=5750\)
\(\left(x\cdot100\right)+5050=5750\)
\(x\cdot100=5750-5050\)
\(x\cdot100=700\)
\(x=700\div100\)
\(x=7\)
Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750
<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750
<=> 100x+5050=5750
=>100x=5750-5050
=>100x=700
=>x=700:100
=>x=7
Vậy x=7
hoặc mở câu hỏi tương tự tham khảo.
\(a)\) \(A=4+2^2+2^3+...+2^{20}\)
\(A=2^2+2^2+2^3+...+2^{20}\)
\(2A=2^3+2^3+2^4+...+2^{21}\)
\(2A-A=\left(2^3+2^3+2^4+...+2^{21}\right)-\left(2^2+2^2+2^3+...+2^{20}\right)\)
\(A=2^3+2^{21}-2^2-2^2\)
\(A=2^3+2^{21}-2.2^2\)
\(A=2^3+2^{21}-2^3\)
\(A=2^{21}\)
Vậy \(A=2^{21}\)
\(b)\) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow\)\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Leftrightarrow\)\(100x+\frac{100\left(100+1\right)}{2}=5750\)
\(\Leftrightarrow\)\(100x+5050=5750\)
\(\Leftrightarrow\)\(100x=5750-5050\)
\(\Leftrightarrow\)\(100x=700\)
\(\Leftrightarrow\)\(x=\frac{700}{100}\)
\(\Leftrightarrow\)\(x=7\)
Vậy \(x=7\)
Chúc bạn học tốt ~
A=4+22+23+24+...+220
=22+22+23+24+...+220
=>2A=23+23+24+...+221
=>2A-A=23+23+24+...+221-22-22-23-24-...-220
=>A(2-1)=23+221-22-22
=>A=8+221-4-4
=>A=221
a ) 5 . | x + 1 | - 3 = 20 . 2
5 . | x + 1 | - 3 = 1 . 2
5 . | x + 1 | - 3 = 2
5 . | x + 1 | = 2 + 3
5 . | x + 1 | = 5
| x + 1 | = 5 : 5
| x + 1 | = 1
\(\Rightarrow x+1\in\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{0;-2\right\}\)
Vậy \(x\in\left\{0;-2\right\}\)
b) ( x + 1 ) + ( x + 2 ) + ......... + ( x + 100 ) = 5750
[ ( x + 100 ) + ( x + 1 ) ] . [ ( x + 100 ) - ( x + 1 ) + 1 ] : 2 = 5750
[ 2x + 101 ] . 100 : 2 = 5750
[ 2x + 101 ] . 100 = 5750 . 2
[ 2x + 101 ] . 100 = 11500
[ 2x + 101 ] = 11500 : 100
[ 2x + 101 ] = 115
2x = 115 - 101
2x = 14
x = 14 : 2
x = 7
Vậy x = 7
c) ( 52 - 1 ) . 3 - 2 = 70
( 25 - 1 ) . 3 = 70 + 2
24 . 3 = 72
72 = 72
a) x . 100 + (1 + 2 + .... + 100) = 5750
x . 100 + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
b) vô câu hỏi tương tự ấy, lười ghi quá :)))
Đặt A=1+2+22+23+…+220
=>2.A=2+22+23+24+…+221
=>2.A-A=2+22+23+24+…+221-1-2-22-23-…-220
=>A=221-1
Vậy 1+2+22+23+…+220=221-1
(x+1)+(x+2)+(x+3)+…+(x+100)=5750
=>x+1+x+2+x+3+…+x+100=5750
=>(x+x+x+…+x)+(1+2+3+…+100)=5750
Từ 1 đến 100 có:(100-1):1+1=100(số)
=>100.x+(100+1).100:2=5750
=>100.x+101.50=5750
=>100.x+5050=5750
=>100.x=5750-5050
=>100.x=700
=>x=7
Vậy x=7
=(x+x+...+x)+(1+2+...+100)=5750
=100x+5050=5750
100x=5750-5050
100x=700
x=700/100=7
(x+1)+(x+2)+....+(x+100)=5750
x+1+x+2+...+x+100 =5750
\(x\)x100+1+2+...+100 =5750
bí hihi
tự làm nha