K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

2x(x – 3) + 5(x – 3) = 0

ó (2x + 5)(x – 3) = 0

Vậy x = - 5 2  hoặc x = 3

Đáp án cần chọn là: B

chọn ý B nha 

30 tháng 11 2019

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=3\end{cases}}\)

Chọn ( B )

24 tháng 11 2017

để \(\dfrac{x^3+x^2-x-1}{x^3+2x-3}=0\) thì

x3+x2-x-1=0

=>(x3+x2)-(x+1)=0

=>x2(x+1)-(x+1)=0

=>(x+1)(x2-1)=0

=>(x+1)(x-1)(x+1)=0

=>(x+1)2(x-1)=0

=>\(\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

vậy x=-1 hoặc x=1

16 tháng 4 2018

\(a)\) \(3-2x>4x+5\)

\(\Leftrightarrow\)\(3-2x+2x>4x+2x+5\)

\(\Leftrightarrow\)\(6x+5< 3\)

\(\Leftrightarrow\)\(6x+5-5< 3-5\)

\(\Leftrightarrow\)\(6x< -2\)

\(\Leftrightarrow\)\(\frac{6x}{6}< \frac{-2}{6}\)

\(\Leftrightarrow\)\(x< \frac{-1}{3}\)

Vậy \(x< \frac{-1}{3}\)

Chúc bạn học tốt ~ 

17 tháng 3 2021

1. Trong các phương trình sau, phương trình bậc nhất 1 ẩn là

A. 2/x - 7=0; B. |7x+5)-1=0; C. 8x-9=0

2. điều kiện xác định của phương trình

\(\frac{4}{2x-3}=\frac{7}{3x-5}\)

A. x khác 3/2. B. x khác5/3; C. x khác 3/2 hoặc 5/3; D. x khác 3/2 và 5/3

17 tháng 3 2021

1.Pt bậc nhất 1 ẩn:\(8x-9=0\)

2.ĐKXĐ:\(x\ne\frac{3}{2};x\ne\frac{5}{3}\)

2 tháng 5 2021

1: (x2-4x+3)=(x-1)(x-3) lớn hơn or bằng 0

suy ra: x<=1 hoặc 3<=x

2: x3-2x2+3x-6=(x-2)(x2+3)<0

mà x2+3>0 =>x<2

3: x+2 lớn hơn hoặc bằng 0 => x lớn hơn hoặc bằng -2

4: =>x+2>0 và x-3<0 => -2<x<3

2 tháng 5 2021

1, \(x^2-4x+3\ge0\Leftrightarrow\left(x-3\right)\left(x-1\right)\ge0\)

TH1 : \(\hept{\begin{cases}x-3\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\ge1\end{cases}\Leftrightarrow}x\ge3}\)

TH2 : \(\hept{\begin{cases}x-3\le0\\x-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\le1\end{cases}\Leftrightarrow}x\le1}\)

Vậy BFT có tập nghiệm là S = { x | x =< 1 ; x >= 3  } 

2, \(x^3-2x^2+3x-6< 0\Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)< 0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x-2\right)< 0\Rightarrow x-2< 0\)vì \(x^2+3>0\forall x\)

\(\Leftrightarrow x< 2\)Vậy BFT có tập nghiệm là S = { x | x < 2 } 

Bài 1:

a) \(\left(x-1\right)\left(x+1\right)\left(x+2\right)\)

\(=\left(x^2-1\right)\left(x+2\right)\)

\(=x^3+x-2\)

b) \(\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)\)

\(=\dfrac{1}{2}x^2y^2\cdot\left(4x^2-y^2\right)\)

\(=2x^4y^2-\dfrac{1}{2}x^2y^4\)

Bài 2:

a) \(2x\cdot\left(x-5\right)-x\left(2x+3\right)=26\)

\(\Rightarrow2x^2-10x-2x^2-3x=26\)

\(\Rightarrow-13x=26\)

\(\Rightarrow x=2\)

b) \(\left(3y^2-y+1\right)\cdot\left(y-1\right)+y^2\cdot\left(4-3y\right)-\dfrac{5}{2}=0\)

\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3-\dfrac{5}{2}=0\)

\(\Rightarrow2y+\dfrac{7}{5}=0\)

\(\Rightarrow2y=-1,4\)

\(\Rightarrow y=-0,7\)

c) \(2x^2+3\left(x-1\right)\cdot\left(x+1\right)=5x\left(x+1\right)\)

\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)

\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)

\(\Rightarrow5x^2-5x^2-5x=3\)

\(\Rightarrow-5x=3\)

\(\Rightarrow x=0,6\)

5 tháng 4 2018

a)

\(\left|2x-1\right|=7\)

\(\Leftrightarrow2x-1=7\) hoặc \(2x-1=-7\)

\(\Leftrightarrow2x=8\) hoặc \(2x=-6\)

\(\Leftrightarrow x=4\) hoặc \(x=-3\)

Vậy......

b. \(\left|2-3x\right|=-8\) ( vô ngiệm)

c.

\(\left|3x-1\right|=x-1\) ( ĐK: \(x\ge1\))

* TH1:

\(3x-1=x-1\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\) ( loại)

* TH2:

\(3x-1=-x+1\)

\(\Leftrightarrow4x=2\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(loại)

Vậy pt vô nghiệm

d.

\(\left|3-2x\right|=5-x\) ( ĐK: \(x\le5\))

* TH1:

\(3-2x=5-x\)

\(\Leftrightarrow-x-2=0\)

\(\Leftrightarrow x=-2\) (nhận)

*TH2:

\(3-2x=-5+x\)

\(\Leftrightarrow8-3x=0\)

\(\Leftrightarrow x=\dfrac{8}{3}\) (nhận)

Vậy tập nghiệm của pt là: \(S=\left\{-2;\dfrac{8}{3}\right\}\)

5 tháng 4 2018

\(a,\left|2x-1\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy pt có tập nghiệm S = { 4 ; - 3 }

\(b,\left|2-3x\right|=-8\)

\(\Rightarrow\) pt vô nghiệm

\(c,\left|3x-1\right|=x-1\) (1)

+ Nếu 3x - 1 ≥ 0 thì x ≥ \(\dfrac{1}{3}\)

Khi đó : \(\left|3x-1\right|=3x-1\)

pt(1) \(\Leftrightarrow3x-1=x-1\)

\(\Leftrightarrow3x-x=-1+1\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\) ( ko t/m )

+ Nếu \(3x-1< 0\) thfi x < \(\dfrac{1}{3}\)

Khi đó : \(\left|3x-1\right|=-3x+1\)

pt(1) \(\Leftrightarrow-3x+1=x-1\)

\(\Leftrightarrow-3x-x=-1-1\)

\(\Leftrightarrow-4x=-2\)

\(\Leftrightarrow x=\dfrac{1}{2}\) ( ko t/m )

Vậy pt vô nghiệm

d, Tương tự c

( Nếu bn chưa lm đc thì ns mk nha )

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\) Mc: \(x.\left(x-5\right)\) \(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5 \(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0 \(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0 \(\Leftrightarrow\) \(x\) . (\(x\) - 3) =...
Đọc tiếp

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\)

Mc: \(x.\left(x-5\right)\)

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0

\(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0

\(\Leftrightarrow\) \(x\) . (\(x\) - 3) = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) - 3 = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) = 3

Vậy \(x\) = 0 hoặc \(x\) = 3

\(x-5\ne0\Rightarrow x\ne5\)

\(x^2-5\ne0\Rightarrow x\ne5\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {3}

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\frac{x.\left(x-4\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

Mc: \(x.\left(x+7\right)\)

\(\Leftrightarrow x^2-4x-x-7=-7\)

\(\Leftrightarrow x^2-4x-x=-7+7\)

\(\Leftrightarrow\) \(x^2-5x=0\)

\(\Leftrightarrow x.\left(x-5\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(x-5=0\)

\(\Leftrightarrow x=0\) hoặc \(x=5\)

Vậy \(x=0\) hoặc \(x=5\)

\(x+7\ne0\Rightarrow x\ne-7\)

\(x^2+7\ne0\Rightarrow x\ne-7\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-7\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {5}

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow TXĐ\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

Mc : \(\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) \(2x^2-4x-4x+8=0\)

\(\Leftrightarrow\) \(2x.\left(x-2\right)-4.\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x-4\right).\left(x-2\right)=0\)

\(\Leftrightarrow2x-4=0\) hoặc \(x-2=0\)

\(\Leftrightarrow x=2\) hoặc \(x=2\)

\(\Leftrightarrow x=2\) (Loại) hoặc x = 2 (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

MC: \(\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow x^2+x+x+1-x^2+x+x-1=4\)

\(\Leftrightarrow x^2-x^2+x+x+x+x+1-1-4=0\)

\(\Leftrightarrow4x-4=0\)

\(\Leftrightarrow4.\left(x-1\right)=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x-1=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x=1\)

\(\Leftrightarrow\) 4 = 0 (Loại) hoặc \(x=1\) (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}\)

\(Mc:\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow\) \(x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow x^2-x^2+x+x-4x+x+x=-1+1\)

\(\Leftrightarrow0=0\) (Nhận)

Vậy S = \(\left\{x\in R;x\ne\pm1\right\}\)

0
20 tháng 5 2018

1.

|x-9|=2x+5

x<9; x-9=-2x-5

3x=4=>x=4/3(n)

x≥9; x-9=2x+5=> x=-14(l)

2.a

A=2x-5≥0<=>2x≥5; x≥5/2

21 tháng 5 2018

1. a) / x - 9 / = 2x + 5

Do : / x - 9 / ≥ 0 ∀x

⇒2x + 5 ≥ 0

⇔ x ≥ \(\dfrac{-5}{2}\)

Bình phương cả hai vế của phương trình , ta được :

( x - 9)2 = ( 2x + 5)2

⇔ ( x - 9)2 - ( 2x + 5)2 = 0

⇔ ( x - 9 - 2x - 5)( x - 9 + 2x + 5) = 0

⇔ ( - x - 14)( 3x - 4) = 0

⇔ x = - 14 ( KTM) hoặc : x = \(\dfrac{4}{3}\) ( TM)

KL....

b) Mạn phép làm luôn , ko chép lại đề :

\(\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{4\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-5}{\left(x-3\right)\left(x+3\right)}\) ( x # 3 ; x # - 3)

⇔ 5x + 15 + 4x - 12 = x - 5

⇔ 9x + 3 = x - 5

⇔ 8x = - 8

⇔ x = -1 ( TM)

KL....