Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(3-2x>4x+5\)
\(\Leftrightarrow\)\(3-2x+2x>4x+2x+5\)
\(\Leftrightarrow\)\(6x+5< 3\)
\(\Leftrightarrow\)\(6x+5-5< 3-5\)
\(\Leftrightarrow\)\(6x< -2\)
\(\Leftrightarrow\)\(\frac{6x}{6}< \frac{-2}{6}\)
\(\Leftrightarrow\)\(x< \frac{-1}{3}\)
Vậy \(x< \frac{-1}{3}\)
Chúc bạn học tốt ~
a) 2x2 - 4x + 5
= 2( x2 - 2x + 1 ) + 3
= 2( x - 1 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 3x2 + 2x + 1
= 3( x2 + 2/3x + 1/9 ) + 2/3
= 3( x + 1/3 )2 + 2/3 ≥ 2/3 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 10
= -x2 + 6x - 9 - 1
= -( x2 - 6x + 9 ) - 1
= -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
d) -x2 + 3x - 3
= -x2 + 3x - 9/4 - 3/4
= -( x2 - 3x + 9/4 ) - 3/4
= -( x - 3/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
e) \(\frac{x^2+4x+5}{2}>0\)
Vì 2 > 0
=> x2 + 4x + 5 > 0
=> x2 + 4x + 4 + 1 > 0
=> ( x + 2 )2 + 1 > 0 ( đúng )
=> \(\frac{x^2+4x+5}{2}>0\)∀ x ( đpcm )
f) \(\frac{-6+2x-x^2}{x^2+1}< 0\)
Vì x2 + 1 ≥ 1 ∀ x
=> -6 + 2x - x2 < 0
=> -x2 + 2x - 1 - 5
= -( x2 - 2x + 1 ) - 5
= -( x - 1 )2 - 5 < 0 ( đúng )
=> \(\frac{-6+2x-x^2}{x^2+1}< 0\)∀ x ( đpcm )
a,Ta có :\(2x^2-4x+5=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+3\)
\(=\left(x-1\right)^2+\left(x-1\right)^2+3=2\left(x-1\right)^2+3\)
Do \(2\left(x-1\right)^2\ge0\Leftrightarrow2\left(x-1\right)^2+3\ge3\forall x\inℝ\)
Hay :\(2x^2-4x+5>0\)
Vậy nên BPT luôn đúng với mọi số thực x
b,Ta có : \(3x^2+2x+1=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
Do \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\inℝ\\2x^2\ge0\forall x\inℝ\end{cases}}\Leftrightarrow\left(x+1\right)^2+2x^2\ge0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
c,Ta có : \(-x^2+6x-10=-\left(x^2-6x+10\right)\)
\(=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)
Do \(\left(x-3\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-3\right)^2-1\le-1\forall x\inℝ\)
Hay \(-x^2+6x-10\le-1\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
d, Ta có :\(-x^2+3x-3=-\left(x^2-3x+3\right)\)
\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{3}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\)
Do \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\forall x\inℝ\)
Hay \(-x^2+3x-3\le0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
2 câu còn lại bạn nào làm giúp mình nha
a) \(\left(x+17\right).\left(25-x\right)=0\)
\(\Leftrightarrow x+17=0\)hoặc \(25-x=0\)
Từ \(x+17=0\Rightarrow x=0-17=-17\)
Từ \(25-x=0\Rightarrow x=25-0=25\)
Vậy \(x=-17\) hoặc \(25\)
a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2
để \(\dfrac{x^3+x^2-x-1}{x^3+2x-3}=0\) thì
x3+x2-x-1=0
=>(x3+x2)-(x+1)=0
=>x2(x+1)-(x+1)=0
=>(x+1)(x2-1)=0
=>(x+1)(x-1)(x+1)=0
=>(x+1)2(x-1)=0
=>\(\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
vậy x=-1 hoặc x=1
\(2x-2=8-3x\)
\(\Leftrightarrow\)\(2x+3x=8+2\)
\(\Leftrightarrow\)\(5x=10\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
\(x^2-3x+1=x+x^2\)
\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)
\(\Leftrightarrow\)\(-4x=-1\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy...
mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))
1: (x2-4x+3)=(x-1)(x-3) lớn hơn or bằng 0
suy ra: x<=1 hoặc 3<=x
2: x3-2x2+3x-6=(x-2)(x2+3)<0
mà x2+3>0 =>x<2
3: x+2 lớn hơn hoặc bằng 0 => x lớn hơn hoặc bằng -2
4: =>x+2>0 và x-3<0 => -2<x<3
1, \(x^2-4x+3\ge0\Leftrightarrow\left(x-3\right)\left(x-1\right)\ge0\)
TH1 : \(\hept{\begin{cases}x-3\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\ge1\end{cases}\Leftrightarrow}x\ge3}\)
TH2 : \(\hept{\begin{cases}x-3\le0\\x-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\le1\end{cases}\Leftrightarrow}x\le1}\)
Vậy BFT có tập nghiệm là S = { x | x =< 1 ; x >= 3 }
2, \(x^3-2x^2+3x-6< 0\Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)< 0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x-2\right)< 0\Rightarrow x-2< 0\)vì \(x^2+3>0\forall x\)
\(\Leftrightarrow x< 2\)Vậy BFT có tập nghiệm là S = { x | x < 2 }