Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu điểm M thuộc đường thẳng ax + by = c thì tọa độ ( x 0 ; y 0 ) của điểm M là một nghiệm của phương trình ax + by = c.
Vẽ OH\perp CD\left(H\in CD\right)OH⊥CD(H∈CD). Ta chứng minh OH = r = OB. (r là bán kính của đường tròn (O) ).
Tia CO cắt tia đối của tia By tại E.
Ta có \Delta OAC=\Delta OBE\left(g.c.g\right)\Rightarrow OC=OEΔOAC=ΔOBE(g.c.g)⇒OC=OE.
Tam giác DEC có DO vừa là đường cao vừa là đường trung tuyến nên DEC là tam giác cân tại D.
Khi đó DO cũng là đường phân giác.
OH\perp DC,OB\perp DE\Rightarrow OH=OB.OH⊥DC,OB⊥DE⇒OH=OB..
Suy ra CD tiếp xúc với (O) tại H.
Ta có OH\perp CD,OH=OB=rOH⊥CD,OH=OB=r.
Vậy CD là tiếp tuyến của đường tròn (O).
Vẽ OH⊥CD(H∈CD). Ta chứng minh OH = r = OB. (r là bán kính của đường tròn (O) ).
Tia CO cắt tia đối của tia By tại E.
Ta có ΔOAC=ΔOBE(g.c.g)⇒OC=OE.
Tam giác DEC có DO vừa là đường cao vừa là đường trung tuyến nên DEC là tam giác cân tại D.
Khi đó DO cũng là đường phân giác.
OH⊥DC,OB⊥DE⇒OH=OB..
Suy ra CD tiếp xúc với (O) tại H.
Ta có OH⊥CD,OH=OB=r.
Vậy CD là tiếp tuyến của đường tròn (O).
bài làm
a, gọi H là tiếp điểm của tiếp tuyến MN
theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M
⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)
theo giả thuyết 2 tiếp tuyến HN cắt BN tại N
⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)
nên ta có: MN=HM=HN=\(\dfrac{1}{2}\)(AOH =HON)=90 độ
vậy góc MON=90 đọ và là tâm giác vuông tại O đường cao OH
b,theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M
⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)
theo giả thuyết 2 tiếp tuyến HN cắt BN tại N
⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)
Theo hệ thức lượng trong tam giác vuông: OI^2=MI.INOH2=MH.HNAM.BN=MI.NI=OI^
Vì vậy AM.BN=MI.NI=OI^2=R^2AM.BN=MH.NH=
\(OH^2\)=\(R^2\)
O B A M D N I
a) Ta thấy ngay \(\Delta MAO=\Delta DBO\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MO=DO\)
Xét tam giác MNP có NO là đường cao đồng thời trung tuyến nên tam giác MNP cân tại N.
b) Do tam giác MNP cân tại N nên NO cũng đồng thời là phân giác.
Vậy thì \(\Delta ION=\Delta BON\) (Cạnh huyền góc nhọn)
\(\Rightarrow OI=OB=R\)
Lại có \(OI\perp MN\Rightarrow\) MN vuông góc OI tại I hay MN là tiếp tuyến của (O)
c) Ta thấy ngay \(AM.BN=MI.IN\)
Xét tam giác vuông MON có OI là đường cao nên \(MI.IN=OI^2=R^2\)
\(\Rightarrow AM.BN=R^2\)
d) Do AM và BN cùng vuông góc với AB nên ANNB là hình thang vuông
\(S_{AMNB}=\frac{\left(AM+NB\right).AB}{2}=\frac{\left(MI+IN\right).AB}{2}=\frac{MN.AB}{2}\)
Do AB không đổi nên diện tích hình thang vuông AMNB nhỏ nhất khi MN nhỏ nhất.
MN là đường xiên nên nó nhỏ nhất khi là đường vuông góc, nói cách khác là tứ giác AMNB là hình chữ nhật.
Khi đó AM = OI = R.
Vậy khi M cách O một khoảng bằng R thì diện tích tứ giác AMNB nhỏ nhất.
Nếu điểm M thuộc đường thẳng ax + by = c thì tọa độ (xo; yo) của điểm M là một nghiệm của phương trình ax + by = c.