K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{80}{9}x^3+\dfrac{1}{3}x^2-\dfrac{1}{3}x+18\)

Hệ số cao nhất là 80/9

Hệ số tự do là 18

Bậc là 3

b: \(f\left(3\right)=\dfrac{80}{9}\cdot27+\dfrac{1}{3}\cdot9-\dfrac{1}{3}\cdot3+18=260\)

\(f\left(-3\right)=\dfrac{80}{9}\cdot\left(-27\right)+\dfrac{1}{3}\cdot9+\dfrac{1}{3}\cdot3+18=-218\)

c: f(x)=-28 nên \(\dfrac{80}{9}x^3+\dfrac{1}{3}x^2-\dfrac{1}{3}x+46=0\)

\(\Leftrightarrow x\simeq-1.75\)

I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x

14 tháng 3 2020

P(x) = 3x4 + x- 2x2 + x- 1/4x

Bậc: 4

Hệ số cao nhất: 3

Hệ số tự do: không có :v

Q(x) = 3x4 - 4x3 + 3x2 - 2x2 - 1/4

Bậc: 4

Hệ số cao nhất: 4

Hệ số tự do: 1/4

a) P(x) + Q(x) = 3x4 + x3 - 2x2 + x2 - 1/4x + 3x4 - 4x3 + 3x- 2x2 - 1/4

                       = (3x4 + 3x4) + (x3 - 4x3) + (-2x2 + x2 + 3x2 - 2x2) - 1/4x - 1/4

                       = 6x4 - 3x3 - 1/4x - 1/4

P(x) - Q(x) = (3x4 + x3 - 2x2 + x2 - 1/4x) - (3x4 - 4x3 + 3x2 - 2x2 - 1/4)

                  = 3x4 + x3 - 2x2 + x2 - 1/4x - 3x4 + 4x3 - 3x2 + 2x2 + 1/4

                  = (3x4 - 3x4) + (x3 + 4x3) + (-2x2 + x2 - 3x2 - 2x2) - 1/4x + 1/4

                  = 5x3 - 2x2 - 1/4x + 1/4

Q(x) - P(x) = (3x4 - 4x3 + 3x2 - 2x2 - 1/4) - (3x4 + x3 - 2x2 + x2 - 1/4x)

                  = 3x4 - 4x3 + 3x2 - 2x2 - 1/4 - 3x4 - x3 + 2x2 - x2 + 1/4x

                  = (3x4 - 3x4) + (-4x3 - x3) + (3x2 - 2x2 + 2x2 - x2) + 1/4 + 1/4x

                  = -5x3 + 2x2 - 1/4 + 1/4x

b) M(x) = P(x) - Q(x)

            = 5x3 - 2x2 - 1/4x + 1/4

M(-2) = 5.(-2)3 - 2.(-2)2 - 1/4.(-2) + 1/4

          = -40 - 8 + 1/2 + 1/4

          = -189/4

sai đâu sửa hộ nha

15 tháng 3 2020

đúng rùi ớ

11 tháng 6 2020

cảm ơn bn nhìungaingunghaha

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Lời giải:

Tìm nghiệm của một đa thức $P(x)$ nào đó nghĩa là ta tìm giá trị $x$ sao cho $P(x)=0$

a)

\(5x^4+2=0\)

\(\Leftrightarrow x^4=-\frac{2}{5}< 0\) (vô lý)

Do đó đa thức vô nghiệm.

b)

\((x^2-1)-(3+x^2-x)=0\)

\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy đa thức có nghiệm $x=4$

c)

\(3x^3-12x=0\)

\(\Leftrightarrow 3x(x^2-4)=0\)

\(\Leftrightarrow 3x(x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x=2\\ x=-2\end{matrix}\right.\)

Vậy đa thức có nghiệm $x=0; x=2;x=-2$

d)

\(2x+1-\frac{1}{2}(x-2)=0\)

\(\Leftrightarrow \frac{3}{2}x+2=0\Leftrightarrow x=-\frac{4}{3}\)

Vậy $x=-\frac{4}{3}$ là nghiệm của đa thức

e)

\(3(x-\frac{1}{3})+2(x-1)-(x+2)=0\)

\(\Leftrightarrow 4x-5=0\Leftrightarrow x=\frac{5}{4}\)

Vậy đa thức có nghiệm $x=\frac{5}{4}$

f)

\(x^3+2x^2+x+2=0\)

\(\Leftrightarrow x^2(x+2)+(x+2)=0\Leftrightarrow (x+2)(x^2+1)=0\Rightarrow \left[\begin{matrix} x=-2\\ x^2=-1< 0(\text{loại})\end{matrix}\right.\)

Vậy đa thức có nghiệm $x=-2$

7 tháng 8 2019

nhưng em thi xong r :((

giáo viên có quen ai ở trên đây dạy văn ko ạ

Câu 1: \(\dfrac{\left(a+b\right)^2}{a-b}\)

Câu 2:

\(H+\left(3x-2y^2+5x^2-4y-3\right)=\left(2xy\right)^2+2x+2y-x^2-2y^2\)

\(\Rightarrow H=\left(4x^2y^2+2x+2y-x^2-2y^2\right)-\left(3x-2y^2+5x^2-4y-3\right)\)

\(\Rightarrow H=4x^2y^2+2x+2y-x^2-2y^2-3x+2y^2-5x^2+4y-3\)

\(\Rightarrow H=4x^2y^2+\left(2x-3x\right)+\left(2y+4y\right)+\left(-x^2-5x^2\right)+\left(-2y^2+2y^2\right)-3\)

\(\Rightarrow H=4x^2y^2-x+6y-6x^2-3\)

16 tháng 4 2018

1.a2 + b2 = (a - b).k với k ∈ Z; k ≠0

9 tháng 5 2017

Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến

f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9

c) Tính f(x) + g(x); f(x) - g(x)

f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )

= 3x2 + x

f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9

= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )

= -2x5 - 14x4 - 2x3 -x2 + 7x + 18

a ) Q ( x ) = [ P ( x ) + Q ( x ) ] - P ( x ) =  ( x- 2x+ 1 ) - ( x- 3x2+\(\frac{1}{2}\)- x ) = x- 2x+ 1 - x4  + 3x2 - \(\frac{1}{2}\)+ x 

= x-  x- ( 2x2 - 3x) + x + \(\frac{1}{2}\) 

= x-  x4 + x2 + x + \(\frac{1}{2}\) 

20 tháng 7 2016

a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0

=> pt vô nghiệm

b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3

           = (x+1/3)2+1/3>0

=> pt vô nghiệm.

20 tháng 7 2016

\(a,f\left(x\right)=x^2-10x+27\)

\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)

\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)

\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\)  (Vì \(\left(x-5\right)^2\ge0\)  \(Vx\) )

Vậy đa thức f(x) vô nghiệm

\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)

\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)

\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)

\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)  (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\)  \(Vx\) )

Vậy đa thức g(x) vô nghiệm