K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0

=> pt vô nghiệm

b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3

           = (x+1/3)2+1/3>0

=> pt vô nghiệm.

20 tháng 7 2016

\(a,f\left(x\right)=x^2-10x+27\)

\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)

\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)

\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\)  (Vì \(\left(x-5\right)^2\ge0\)  \(Vx\) )

Vậy đa thức f(x) vô nghiệm

\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)

\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)

\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)

\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)  (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\)  \(Vx\) )

Vậy đa thức g(x) vô nghiệm

1 tháng 4 2019

\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)

\(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)

=\(4x+\frac{16}{3}\)

2 tháng 4 2019

sao làm csw mỗi câu z bạn

23 tháng 7 2018

\(f\left(x\right)=2x+1=0\)

\(\Leftrightarrow\)\(x=-\frac{1}{2}\)

\(g\left(x\right)=x^3+\frac{1}{2}x^2+3x+\frac{3}{2}=0\)

\(\Leftrightarrow\)\(x^2\left(x+\frac{1}{2}\right)+3\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\)\(\left(x+\frac{1}{2}\right)\left(x^2+3\right)=0\)

\(\Leftrightarrow\)\(x+\frac{1}{2}=0\)  (vì x2 + 3 > 0 )

\(\Leftrightarrow\)\(x=-\frac{1}{2}\)

Vậy nghiệm chung là:  \(x=-\frac{1}{2}\)

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

15 tháng 5 2019

1 )

a) f(x) + g(x) = (x2-5+x3-x ) + ( x+x4-4+x2)

= x2-5+x3-x + x+ x4-4 +x2

=( x2+x2) + (-5-4)+ x3+(-x+x)+x4

= 2x2 -9 + x3 + x4

= x4+x3+2x2-9

b) Có : g(x)-f(x)=h(x )

=> f(x) = g(x) - h(x)

Tiếp theo bn tự tính như phần a nhé

c ) Thay x=-1 , y=-1 vào đa thức rồi bn tự tính nhé ! dễ mà

15 tháng 5 2019

2 )

a ) Xét tam giác MAC và tam giác MDB có :

MB = MC ( do M là trung điểm của cạnh BC )

MD = MA ( gt )

\(\widehat{AMC}=\widehat{DMB}\) ( hai góc đối đỉnh )

nên tam giác MAC = tam giác MBD

6 tháng 8 2019

\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)

\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)

\(4x-3-2\left(5-3x\right)+2=0\)

\(4x-1-2\left(5-3x\right)=0\)

\(4x-1-10+6x=0\)

\(10x-11=0\)

\(10x=0+11\)

\(10x=11\)

\(x=\frac{11}{10}\)