Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm số xác định thì x-m+2>=0 và x-m+2<>1
=>x>=m-2 và x<>m-1
=>m-2<=0 và \(m-1\notin\left(0;1\right)\)
=>m<=2 và (m-1<=0 hoặc m-1>=1)
=>m=2 hoặc m<=1
Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)
\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)
Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)
Để y xác định thì \(\left(m-2\right)x+2m-3\ge0\forall x\in\left[-1;4\right]\)
\(\Leftrightarrow mx-2x+2m-3\ge0\)
\(\Leftrightarrow m\left(x+2\right)-2x-3\ge0\)
\(\Leftrightarrow m\ge\dfrac{2x+3}{x+2}\left(x+2>0\forall x\in\left[-1;4\right]\right)\)
\(\Rightarrow1\le m\le\dfrac{11}{6}\)
Lời giải:
Để hàm số $y$ xác định trên $(0;1)$ thì:
\(\left\{\begin{matrix} x-m+2\geq 0\\ x-m+2\neq 1\end{matrix}\right., \forall x\in (0;1)\)
\(\Leftrightarrow \left\{\begin{matrix} m\leq x+2\\ m\neq (x+1)\end{matrix}\right., \forall x\in (0;1)\)
\(\Leftrightarrow \left\{\begin{matrix} m\leq 0+2=2\\ m\neq (1;2)\end{matrix}\right.\)
\(\Rightarrow m\in (-\infty;1]\cup \left\{2\right\}\)
Để hàm số y = f(x) = \(\frac{2x-3}{x^2-\left(2m-1\right)x+m^2}\) xác định trên \(ℝ\)khi và chỉ khi \(x^2-\left(2m-1\right)x+m^2\ne0\), \(\forall x\inℝ\)
Nghĩa là \(x^2-\left(2m-1\right)x+m^2=0\) vô nghiệm
<=> \(\Delta< 0\)
<=> \(\left(2m-1\right)^2-4m^2< 0\)
<=> \(-4m+1< 0\)
<=> m > 1/4.
Đáp án D