K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

28 tháng 8 2021

hacker

30 tháng 5 2017

TenAnh1 TenAnh1

27 tháng 4 2017

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:

\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)

Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:

\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)

Giả sử \(a=\log_yx=3\)\(b=\log_xy=\frac{1}{3}\)

\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

NV
19 tháng 11 2019

\(2^x=x^2\Rightarrow xln2=2lnx\Rightarrow\frac{ln2}{2}=\frac{lnx}{x}\Rightarrow x=2\)

Ta cũng có \(\frac{2ln2}{2.2}=\frac{lnx}{x}\Rightarrow\frac{ln4}{4}=\frac{lnx}{x}\Rightarrow x=4\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)

Pt dưới: \(4logx-\frac{logx}{loge}=log4\)

\(\Leftrightarrow logx\left(4-ln10\right)=log4\Leftrightarrow logx\left(ln\left(\frac{e^4}{10}\right)\right)=log4\)

\(\Rightarrow logx=\frac{log4}{ln\left(\frac{e^4}{10}\right)}=log4.log_{\frac{e^4}{10}}e\)

\(\Rightarrow x=10^{log4.log_{\frac{e^4}{10}}e}=\left(10^{log4}\right)^{log_{\frac{e^4}{10}}e}=2^{2.log_{\frac{e^4}{10}}e}\)

\(\Rightarrow\left\{{}\begin{matrix}c=2\\d=4\end{matrix}\right.\)

Bạn tự thay kết quả và tính

21 tháng 11 2019

Em cảm ơn nhiều ạ. ❤️

23 tháng 4 2016

Ta có \(f'\left(x\right)=3ax^2+2bx+c;f"\left(x\right)=6ax+2b\)

Hàm số \(f\left(x\right)\) đạt cực tiểu tại \(x=0\) khi và chỉ khi 

\(\begin{cases}f'\left(0\right)=0\\f"\left(0\right)>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\2b>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\b>0\end{cases}\left(1\right)\)

Hàm số \(f\left(x\right)\) đạt cực đại tại \(x=1\) khi và chỉ khi \(\begin{cases}f'\left(1\right)=0\\f"\left(1\right)< 0\end{cases}\)\(\Leftrightarrow\begin{cases}3a+2b+c=0\\6a+2b< 0\end{cases}\)

\(\begin{cases}f\left(0\right)=0\\f\left(1\right)=1\end{cases}\)\(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) \(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) (3)

Từ (1), (2), (3) suy ra \(a=-2;b=3;c=0;d=0\)

Kiểm tra lại \(f\left(x\right)=-2x^3+3x^2\)

Ta có \(f'\left(x\right)=-6x^2+6x;f"\left(x\right)=-12x+6\)

\(f"\left(0\right)=6>0\), hàm số đạt cực tiểu tại \(x=0\)

\(f"\left(1\right)=-6< 0\), hàm số đạt cực đại tại \(x=1\)

Vậy \(a=-2;b=3;c=0;d=0\)

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

1 tập nghiệm bất phương trình e^2x+e^x-6<0 là A (-3;2) B\(\left(-\infty;2\right)\) C\(\left(-\infty;ln2\right)\) D \(\left(ln2;+\infty\right)\) 2 Trong không gian, cho tam giác ABC vuông tại AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là 3 cho \(\int_1^3\) f(x)dx=4. Tính I =...
Đọc tiếp

1 tập nghiệm bất phương trình e^2x+e^x-6<0 là

A (-3;2) B\(\left(-\infty;2\right)\) C\(\left(-\infty;ln2\right)\) D \(\left(ln2;+\infty\right)\)

2 Trong không gian, cho tam giác ABC vuông tại AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là

3 cho \(\int_1^3\) f(x)dx=4. Tính I = \(\int_1^0\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}dx\)

A.4 B.8 C.2 D.6

4 cho hai số phức \(z_1\) =2+i và \(z_2\) =-3+i . Phần ảo của số phức w= \(z_1z_2+2i\)

A.-1 B.3 C.1 D.7

5 gọi z1,z2 là hai nghiệm phức của pt \(z^2+4z+5=0\) trong đó z2 là nghiệm phức có phẩn ảo dương. Mô đun của số phúc w=\(z_1-2z_2\)

6 rong ko gian với hệ tọa độ oxyz. cho hai điểm A(0;1;1) ,B(1;3;2). Viết phương trình của mặt phẳng(P) đi qua A và vuông góc với đường thẳng AB

A :x+2y+z-9=0 B x+4y+3z-7=0 C x+2y+z-3=0 D y+z-2=0

7 Có 9 chiếc ghế dc kê thanh một hàng ngang. xếp ngẫu nhiên 9 học sinh trong đó có 3 hs nam và 6 hs nữ ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một hs,.Xác suất để các học sinh nam nào ngồi cạnh nhau là

8 Cho a>0,b>0 thỏa mãn \(a^2+9b^2=10ab\) .Khẳng định nào sau đây đúng

A log(a+1)+logb=1 B \(log\frac{a+3b}{4}=\frac{loga+logb}{2}\) C 3log(a+3b)=log a-log b D 2log(a+3b)=2log a+log b

9 trong ko gian oxyz điểm M (3;0;-2) nằm trên mp nào sau đây

A(oxy) B(oyz) C x=0 D(oxz)

3
NV
8 tháng 6 2020

8.

\(a^2+9b^2=10ab\Leftrightarrow a^2+6ab+9b^2=16ab\)

\(\Leftrightarrow\left(a+3b\right)^2=16ab\)

\(\Rightarrow log\left(a+3b\right)^2=log\left(16ab\right)\)

\(\Rightarrow2log\left(a+3b\right)=log16+loga+logb\)

\(\Leftrightarrow log\left(a+3b\right)-\frac{log4^2}{2}=\frac{loga+logb}{2}\)

\(\Leftrightarrow log\left(a+3b\right)-log4=\frac{loga+logb}{2}\)

\(\Leftrightarrow log\frac{a+3b}{4}=\frac{loga+logb}{2}\)

9.

Tung độ của điểm M bằng 0 nên nó nằm trên mặt phẳng Oxz

NV
8 tháng 6 2020

5.

\(z^2+4z+5=0\Leftrightarrow\left(z+2\right)^2=-1=i^2\)

\(\Rightarrow\left[{}\begin{matrix}z+2=i\\z+2=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z_2=-2+i\\z_1=-2-i\end{matrix}\right.\)

\(\Rightarrow w=z_1-2z_2=2-3i\)

\(\Rightarrow\left|w\right|=\sqrt{2^2+\left(-3\right)^2}=\sqrt{13}\)

6.

\(\overrightarrow{AB}=\left(1;2;1\right)\Rightarrow\) mặt phẳng (P) nhận (1;2;1) là 1 vtpt

Pt (P): \(1\left(x-0\right)+2\left(y-1\right)+1\left(z-1\right)=0\)

\(\Leftrightarrow x+2y+z-3=0\)

7.

Đề chắc ghi sai, có phải đề đúng là xác suất để ko có học sinh nam nào ngồi cạnh nhau?

Xếp bất kì: có \(9!\) cách

Xếp 6 bạn nữ có \(6!\) cách, 6 bạn nữ này tạo ra 7 vị trí trống, xếp 3 bạn nam vào các vị trí trống đó có \(A_7^3\) cách

Xác suất: \(P=\frac{6!.A_7^3}{9!}=\frac{5}{12}\)