Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
15.
ĐKXĐ: \(x^2+2x+1>0\Rightarrow x\ne-1\)
\(\Leftrightarrow log_2\left(x^2+2x+1\right)>log_22\)
\(\Leftrightarrow x^2+2x+1>2\)
\(\Leftrightarrow x^2+2x-1>0\Rightarrow\left[{}\begin{matrix}x< -1-\sqrt{2}\\x>-1+\sqrt{2}\end{matrix}\right.\)
16.
\(J=4\int\limits^2_0f\left(x\right)dx-\int\limits^2_02xdx=4.3-x^2|^2_0=8\)
17.
\(z=2+2i-6i-6i^2=8-4i\)
\(\Rightarrow\overline{z}=8+4i\)
11.
\(S=4\pi R^2\Rightarrow R=\sqrt{\frac{S}{4\pi}}=2\left(cm\right)\)
12.
\(log\left(10a^3\right)=log10+loga^3=1+3loga\)
13.
\(S=\pi R^2\Rightarrow R=\sqrt{\frac{S}{\pi}}\)
\(\Rightarrow S_{xq}=2\pi R.l=2\pi\sqrt{\frac{S}{\pi}}.l=2l.\sqrt{\pi S}\)
14.
\(\lim\limits_{x\rightarrow-1}\frac{x-2}{x+1}=-\infty\Rightarrow x=-1\) là tiệm cận đứng
1) Chọn B
\(\left(z+i\right)^2+3\left(z^2+3zi+2i^2\right)+2\left(z^2+4zi+4i^2\right)=0\\ \Leftrightarrow\left(z+i\right)^2+3\left(z+i\right)\left(z+2i\right)+2\left(z+2i\right)^2=0\\ \Leftrightarrow\left(2z+3i\right)\left(3z+5i\right)=0\)
\(\Rightarrow\left\{\begin{matrix}z_1=-3i:2\\z_2=-5i:3\end{matrix}\right.\)
Vậy \(2z_1+3z_2=2\left(\frac{-3i}{2}\right)+3\left(\frac{-5i}{3}\right)=-8i\)
2) Chọn D
\(\Delta=\left(4-i\right)^2-4\left(5+i\right)=-5-12i\)
Ta có: \(\Delta=\left(2-3i\right)^2\Rightarrow\sqrt{\Delta}=\pm\left(2-3i\right)\)
Nghiệm của pt là:
\(z=\frac{4-i\pm\sqrt{\Delta}}{2}=\frac{4-i\pm\left(2-3i\right)}{2} \)
\(\Rightarrow\left[\begin{matrix}z=3-2i\\z=1+i\end{matrix}\right.\)
Vì \(\left|z_1\right|< \left|z_2\right|\Rightarrow\left\{\begin{matrix}z_1=1+i\\z_2=3-2i\end{matrix}\right.\)
Vậy \(\left|z_1-2z_2\right|=\left|i+1-6+4i\right|=5\sqrt{2}\)
11.
Thay tọa độ M vào pt d ta được:
\(\frac{1}{1}=\frac{3}{3}=\frac{m}{-2}\Rightarrow m=-2.1=-2\)
12.
\(AA'\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của A'B lên (ABC)
\(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và (ABC)
\(\Rightarrow\widehat{A'BA}=60^0\)
\(AB=\frac{AC}{\sqrt{2}}=2a\Rightarrow AA'=AB.tan60^0=2a\sqrt{3}\)
8.
\(I=2\int\limits^9_0f\left(x\right)dx+3\int\limits^9_0g\left(x\right)dx=2.37+3.???=...\)
Đề thiếu, bạn tự điền số và tính
9.
\(z=\frac{1}{3-4i}=\frac{3+4i}{\left(3-4i\right)\left(3+4i\right)}=\frac{3}{25}+\frac{4}{25}i\)
\(\Rightarrow\overline{z}=\frac{3}{25}-\frac{4}{25}i\)
10.
\(\overline{z_1}=1-5i\) \(\Rightarrow\overline{z_1}+iz_2=1-5i+i\left(3-2i\right)=3-2i\)
Điểm biểu diễn là \(Q\left(3;-2\right)\)
18.
\(F\left(x\right)=\int\limits xe^{x^2}dx\)
Đặt \(t=x^2\Rightarrow xdx=\frac{1}{2}dt\)
\(\Rightarrow F\left(x\right)=\frac{1}{2}\int e^tdt=\frac{1}{2}e^t+C=\frac{1}{2}e^{x^2}+C\)
Ủa bạn có ghi nhầm đáp án A ko? Thế nào thì cả A và D đều ko phải nguyên hàm
19.
\(F\left(x\right)=\int sin^4xcosxdx=\int sin^4x.d\left(sinx\right)=\frac{1}{5}sin^5x+C\)
20.
Đặt \(4x=t\Rightarrow dx=\frac{1}{4}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=8\end{matrix}\right.\)
\(\int\limits^2_0f\left(4x\right)dx=\int\limits^8_0\frac{1}{4}f\left(t\right)dt=\frac{1}{4}\int\limits^8_0f\left(x\right)dx=\frac{1}{4}.24=6\)
15.
\(t=cosx\Rightarrow sinx.dx=-dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1e^t\left(-dt\right)=\int\limits^1_0e^tdt\)
Nếu cần kết quả tích phân thì \(I=e-1\)
16.
\(t=x^2\Rightarrow x.dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^4_04^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^4_04^tdt\)
17.
\(t=x^2+2x\Rightarrow\left(x+1\right)dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=3\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^3_0e^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^3_0e^tdt\)
14.
\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)
15.
\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)
\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)
\(\Leftrightarrow log_a^2b-2log_ab+1=0\)
\(\Leftrightarrow\left(log_ab-1\right)^2=0\)
\(\Rightarrow log_ab=1\Rightarrow a=b\)
16.
\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)
\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)
11.
\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)
\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)
\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)
\(\Rightarrow\) có \(-2+2020+1=2019\) nghiệm
12.
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)
\(\Rightarrow3< x< 5\Rightarrow b-a=2\)
13.
\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)
\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)
10.
\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)
\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
6.
\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)
\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)
\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)
Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)
Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)
3.
\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)
\(\Leftrightarrow-4x-8y+20=-4y+4\)
\(\Leftrightarrow x=-y+4\)
\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)
\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)
17.
\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)
\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)
Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)
\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)
\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)
Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)
\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)
\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)
18.
\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)
\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)
\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)
\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)
8.
\(\int3^xdx=\frac{3^x}{ln3}+C\)
9.
\(V=\frac{1}{3}S.h\Rightarrow h=\frac{3V}{S}=\frac{2\sqrt{6}}{3}\)
10.
\(V=\frac{4}{3}\pi R^3\Rightarrow R=\sqrt[3]{\frac{3V}{4\pi}}=\sqrt[3]{\frac{3.36\pi}{4\pi}}=\sqrt[3]{27}=3\)
4.
\(u_2=u_1q\Rightarrow u_1=\frac{u_2}{q}=\frac{8}{3}\)
5.
\(log_2\left(x-5\right)=3\Rightarrow x-5=8\Rightarrow x=13\)
6.
\(AC=a\sqrt{6}\Rightarrow AB=\frac{AC}{\sqrt{2}}=a\sqrt{3}\)
\(\Rightarrow V=AB^3=9\sqrt{3}.a^3\)
7.
\(y'=e^{2x}.\left(2x\right)'=2.e^{2x}\)
8.
\(a^2+9b^2=10ab\Leftrightarrow a^2+6ab+9b^2=16ab\)
\(\Leftrightarrow\left(a+3b\right)^2=16ab\)
\(\Rightarrow log\left(a+3b\right)^2=log\left(16ab\right)\)
\(\Rightarrow2log\left(a+3b\right)=log16+loga+logb\)
\(\Leftrightarrow log\left(a+3b\right)-\frac{log4^2}{2}=\frac{loga+logb}{2}\)
\(\Leftrightarrow log\left(a+3b\right)-log4=\frac{loga+logb}{2}\)
\(\Leftrightarrow log\frac{a+3b}{4}=\frac{loga+logb}{2}\)
9.
Tung độ của điểm M bằng 0 nên nó nằm trên mặt phẳng Oxz
5.
\(z^2+4z+5=0\Leftrightarrow\left(z+2\right)^2=-1=i^2\)
\(\Rightarrow\left[{}\begin{matrix}z+2=i\\z+2=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z_2=-2+i\\z_1=-2-i\end{matrix}\right.\)
\(\Rightarrow w=z_1-2z_2=2-3i\)
\(\Rightarrow\left|w\right|=\sqrt{2^2+\left(-3\right)^2}=\sqrt{13}\)
6.
\(\overrightarrow{AB}=\left(1;2;1\right)\Rightarrow\) mặt phẳng (P) nhận (1;2;1) là 1 vtpt
Pt (P): \(1\left(x-0\right)+2\left(y-1\right)+1\left(z-1\right)=0\)
\(\Leftrightarrow x+2y+z-3=0\)
7.
Đề chắc ghi sai, có phải đề đúng là xác suất để ko có học sinh nam nào ngồi cạnh nhau?
Xếp bất kì: có \(9!\) cách
Xếp 6 bạn nữ có \(6!\) cách, 6 bạn nữ này tạo ra 7 vị trí trống, xếp 3 bạn nam vào các vị trí trống đó có \(A_7^3\) cách
Xác suất: \(P=\frac{6!.A_7^3}{9!}=\frac{5}{12}\)