K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2015

Ta có: 1+3+5+7+…+(2n-1)=324

Từ 1 đến 2n-1 có:

           (2n-1-1):2+1=n(số)

=>1+3+5+7+…+(2n-1)=324

=>(2n-1+1).n:2=324

=>2n.n:2=324

=>n2=324

=>n=18

2 tháng 11 2015

Số số hạng (2n - 1 - 1) : 2 + 1 = n số

1 + 3 + 5 + 7 + ...+ (2n - 1) = (2n -1 + 1).n : 2 = n2

=> n2 = 324 = 18=> n = 18

Vậy..

13 tháng 10 2019

a) \(2n+7⋮n+1\)

=> \(2n+2+5⋮n+1\)

=> \(2\left(n+1\right)+5⋮n+1\)

=> \(5⋮n+1\)=> \(n+1\inƯ\left(5\right)\)mà \(n\in N\)

=>\(n+1\in\left\{1;5\right\}\)

=> \(n\in\left\{0;4\right\}\)

b) \(n+3⋮n+1\)

=> \(\left(n+1\right)+2⋮n+1\)

=>\(2⋮n+1\)=>\(n+1\inƯ\left(2\right)\)mà \(n\in N\)

=>\(n+1\in\left\{1;2\right\}\)

=>\(n\in\left\{0;1\right\}\)

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

20 tháng 11 2014

Bài 1 :

Gọi số đó là a (a \(\in\) N)

Ta có :

a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7 

\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103

 

 

9 tháng 1 2017

Bài 1 :

Gọi số đó là a (a ∈ N)

Ta có :

a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7 

⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

⇒a + 2 = 105 

21 tháng 11 2014

3a)

1+2+3+4+5+...+n=231

=> (1+n).n:2=231

(1+n).n=231.2

(1+n).n=462

(1+n).n=2.3.7.11

(1+n).n=(2.11).(3.7)

(1+n).n=22.21

=>n=21

2 tháng 11 2016

gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1   nhớ kết bạn với mình nhé

25 tháng 2 2020

a) 3n + 5 \(⋮\)2n

\(\Leftrightarrow\)n + 5 \(⋮\)2n

\(\Leftrightarrow\)2(n + 5) \(⋮\)2n

\(\Leftrightarrow\)2n + 10 \(⋮\)2n

\(\Leftrightarrow\)10 \(⋮\)2n

\(\Leftrightarrow\)2n \(\in\)Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}

\(\Leftrightarrow\)\(\in\){1; 5}

b) 2n + 7 \(⋮\)3n + 1

\(\Leftrightarrow\)3( 2n + 7)\(⋮\)3n + 1

\(\Leftrightarrow\)6n + 21\(⋮\)3n + 1

\(\Leftrightarrow\)2(3n + 1) + 19 \(⋮\)3n + 1

\(\Leftrightarrow\)19 \(⋮\)3n +1

\(\Leftrightarrow\)3n + 1 \(\in\)Ư(19) = {-1; 1; -19; 19}

Tương tự với các câu còn lại 

14 tháng 11 2017

a, 7-3n \(⋮\)n

ta có

3n\(⋮\)n

=> 7 \(⋮\)n

=> n \(\in\)Ư(7)

Ta có

Ư(7) = { 1;7}

=> n \(\in\){1;7}

14 tháng 11 2017

b, bạn tách như sau:n-5=(n+1)-6 rồi so sánh