Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3n + 5 \(⋮\)2n
\(\Leftrightarrow\)n + 5 \(⋮\)2n
\(\Leftrightarrow\)2(n + 5) \(⋮\)2n
\(\Leftrightarrow\)2n + 10 \(⋮\)2n
\(\Leftrightarrow\)10 \(⋮\)2n
\(\Leftrightarrow\)2n \(\in\)Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
\(\Leftrightarrow\)n \(\in\){1; 5}
b) 2n + 7 \(⋮\)3n + 1
\(\Leftrightarrow\)3( 2n + 7)\(⋮\)3n + 1
\(\Leftrightarrow\)6n + 21\(⋮\)3n + 1
\(\Leftrightarrow\)2(3n + 1) + 19 \(⋮\)3n + 1
\(\Leftrightarrow\)19 \(⋮\)3n +1
\(\Leftrightarrow\)3n + 1 \(\in\)Ư(19) = {-1; 1; -19; 19}
Tương tự với các câu còn lại
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)
=>2n+1 thuộc {1,3,7,21}
2n+1 | 1 | 3 | 7 | 21 |
n | 0 | 1 | 3 | 10 |
Vậy n thuộc{0,1,3,10}
a,\(=x^{1.2.3....49.50}\)
b,\(\Rightarrow\)2Q\(=2+2^2+2^3+...+2^{50}\)
2Q-Q\(=2+2^2+2^3+...+2^{50}-1-2-2^2-...-2^{49}\)
Q\(=2^{50}-1\)
Q+1=\(2^{50}\)
Mà Q+1=\(2^n\)
\(2^{50}=2^n\Rightarrow n=50\)