K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1  0 và

∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ;   ∀ m

Nên phương trình luôn có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8

Xét

A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33

Dấu “=” xảy ra khi m = 0

Vậy m = 0 là giá trị cần tìm

Đáp án: B

20 tháng 12 2015

 

a) \(\left(1+\sqrt{2}\right)^2+\left(m+1\right)\left(1+\sqrt{2}\right)-6=0\Leftrightarrow4\sqrt{2}-2=-m\left(1+\sqrt{2}\right)\)

\(m=\frac{2-4\sqrt{2}}{\sqrt{2}+1}=....\)

b) A=\(x^4-13x^2+36\) không làm được nữa..... 

6 tháng 4 2017

\(x^2-2mx+m^2-m+4=0\)

a/ ( a = 1; b = -2m; c = m^2 - m + 4 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)

   \(=4m^2-4m^2+4m-16\)   

    \(=4m-16\)

Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)

Ta có: \(A=x_1^2+x_2^2-x_1x_2\)

             \(=S^2-2P-P\)

             \(=S^2-3P\)

             \(=\left(2m\right)^2-3\left(m^2-m+4\right)\)

             \(=4m^2-3m^2+3m-12\)

              \(=m^2+3m-12\)

               \(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)

                \(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)

Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)

6 tháng 4 2017

a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
 để pt có ng khi Δ > 0 & Δ=0
 => m> hoặc = 4
 

2 tháng 6 2017

a /

xét ten ta ;(1-2m)^2 - 4(m-3) >0

     <=>1-4m+4m^2-4m+12

     <=>4m^2 +13 luông đúng với mọi m tham số  => phương trình có 2 nhiệm phân biệt x1 x2

25 tháng 4 2018

cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất

7 tháng 7 2019

Để PT có nghiệm phân biệt thì: \(\Delta^'>0\)

Hay: \(\left[-\left(m+1\right)\right]^2-\left(m^2-10\right)>0\)

\(\Leftrightarrow m^2+2m+1-m^2+10>0\)

\(\Leftrightarrow2m>-11\)

\(\Leftrightarrow m>-\frac{11}{2}\)

Theo Vi-et, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-10\end{cases}}\) (1)

Ta có: \(C=x_1^2+x_2^2=x_1^2+2x_1x_2+x^2_2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)

Thay (1) vào C, ta được:

\(C=4\left(m+1\right)^2-2\left(m^2-10\right)\)

\(=4m^2+8m+4-2m^2+20\)

\(=2m^2+8m+24\)

\(=2\left(m^2+4m+12\right)\)

\(=2\left(m^2+4m+4+8\right)\)

\(=2\left(m+2\right)^2+16\ge16\forall m\)

=> Min C = 16 tại m = - 2 (tm)

=.= hk tốt!!