Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
- Phương trình: \(x^2-2\left(m+1\right)x+m^2+4=0\)có 2 nghiệm \(x_1;x_2\)thì
\(\Delta^'=b^'^2-ac=\left(m+1\right)^2-\left(m^2+4\right)=2m-3\ge0\Rightarrow m\ge\frac{3}{2}\)(1)
- Và\(x_1;x_2\)thỏa mãn:
- \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=m^2+4\end{cases}}\)
- Do đó \(P=x_1+x_2-x_1x_2=2\left(m+1\right)-\left(m^2+4\right)=-m^2+2m-2\)
\(=-\left(m^2-2m+1\right)-1=-\left(m-1\right)^2-1\)(với \(m\ge\frac{3}{2}\))
- Ta lại có với \(m\ge\frac{3}{2}\)tức là \(m-1\ge\frac{1}{2}>0\)thì hàm số \(P\left(m\right)=-\left(m-1\right)^2-1\)là nghịch biến trong khoảng [\(\frac{3}{2};+\infty\)); tức là P lớn nhất khi m nhỏ nhất. Vậy khi m nhỏ nhất bằng \(\frac{3}{2}\)thì phương trình đã cho có 2 nghiệm \(x_1=x_2=\frac{5}{2}\)và P đạt giá trị lớn nhất = \(-\frac{5}{4}\).
\(\Delta'=\left(m-1\right)^2-m^2-4\)
\(\Delta'=m^2-2m-m^2+1-4\)
\(\Delta'=-2m-3\)
Để pt có 2 nghiệm phân biệt \(\Rightarrow\)\(\Delta'\ge0\)\(\Rightarrow-2m-3\ge0\)
\(\Leftrightarrow m\le-\frac{3}{2}\)
Theo vi-ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+4\end{cases}}\)
\(P=x_1+x_2-x_1x_2\)
\(P=2m+1-m^2-4\)
\(P=-m^2+2m-3\)
\(P=\left(1-m\right)^2-2\)
\(\left(1-m\right)^2-2\ge-2\Rightarrow P\ge-2\)
MIN \(P=-2\)khi\(m=1\)
MAX \(P=\frac{-1}{2}\)khi \(m=\frac{5}{4}\)
a.)Xét \(\Delta=\left(m-2\right)^2+8m=m^2+4m+4=\left(m+2\right)^2\)(>=0) (với mọi m)
vậy pt luôn có 2 nghiệm x1 , x2 với mọi m
b)Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=m-2\\x_1\cdot x_2=-2m\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x_1+x_2\right)^2=\left(m-2\right)^2\\\left(x_1\cdot x_2\right)=-2m\end{cases}\Rightarrow\hept{\begin{cases}\left(x_1^2+x_2^2\right)+-4m=m^2-4m+4\\x_1\cdot x_2=-2m\end{cases}\Rightarrow}x_1^2+x_2^2}=m^2+4\)
Mà \(m^2\ge0\Rightarrow m^2+4\ge4\Rightarrow x_1^2+x_2^2\ge4\)
Vậy gtnn của ........ là 4 khi m=0
\(x^2-2mx+m^2-m+4=0\)
a/ ( a = 1; b = -2m; c = m^2 - m + 4 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)
\(=4m^2-4m^2+4m-16\)
\(=4m-16\)
Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=S^2-2P-P\)
\(=S^2-3P\)
\(=\left(2m\right)^2-3\left(m^2-m+4\right)\)
\(=4m^2-3m^2+3m-12\)
\(=m^2+3m-12\)
\(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)
\(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)
Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)
a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
để pt có ng khi Δ > 0 & Δ=0
=> m> hoặc = 4