Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách từ M đến đường thẳng \(\Delta \) chính là độ dài đoạn MH trong đó H là hình chiếu từ M xuống \(\Delta \).
Gọi các điểm A, B, C, D như hình vẽ.
Ta có: \(OA = 3,OB = 4 \Rightarrow AB =5 \)
\(DB = 2 = \frac{1}{2}OB \Rightarrow CD = \frac{1}{2}OA = 1,5 \Rightarrow MC = 4 - 1,5 = 2,5.\)
Lại có: \(\widehat {MCH} = \widehat {BCD} = \widehat {BAO}\)
Mà: \(\sin \widehat {MCH} = \frac{{MH}}{{MC}};\sin \widehat {BAO} = \frac{{OB}}{{AB}} = \frac{4}{5}\)
\( \Rightarrow \frac{{MH}}{{2,5}} = \frac{4}{5} \Leftrightarrow MH = 2\)
Do đó kết quả đo đạc phù hợp với kết quả tính toán trong lời giải ở Ví dụ 4.
- Giải thích: “Đo độ cao của một ngọn núi cho kết quả là 1 235 \( \pm \)5 m” có nghĩa là
Độ cao của ngọn núi gần với 1235m và độ chính xác là 5m.
Ta có: a = 1235, d= 5.
Vì độ chính xác đến hàng đơn vị (d = 5) nên ta làm tròn a đến hàng chục.
Số quy tròn của 1235 đến hàng chục là 1240.
\(y\left(-x\right)=-x^3+3\left(m^2-1\right)x^2-3x\)
Hàm lẻ khi và chỉ khi \(y\left(x\right)=-y\left(-x\right)\) với mọi x
\(\Leftrightarrow x^3+3\left(m^2-1\right)x^2+3x=x^3-3\left(m^2-1\right)x+3x\) ; \(\forall x\)
\(\Leftrightarrow6\left(m^2-1\right)x^2=0\) ;\(\forall x\)
\(\Leftrightarrow m^2-1=0\Leftrightarrow m=\pm1\)
Gọi \(\bar a\) là đường kính thực của nhân tế bào.
Vì phép đo đường kính nhân tế bào cho kết quả là \(5 \pm 0,3\mu m\).
=> \(a = 5\mu m;d = 0,3\mu m\)
Nên ta có \(\bar a\) nằm trong đoạn \(\left[ {5 - 0,3;5 + 0,3} \right]\) hay \(\left[ {4,7;5,3} \right]\).
Trong toán học, mỗi cách xếp thứ tự đá luân lưu của 5 cầu thủ được gọi là hoán vị.
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
Sai số tương đối của kết quả các phép đo lần lượt là:
Ta có δ 3 là số nhỏ nhất trong các số trên. Vậy phép đo thứ ba có kết quả chính xác nhất.
Đáp án C