Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> ( x+ 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 28 ) = 155
=> (x + x + x + ... + x) + (1 + 2 + 3 + ... + 28) = 155
=> 28x + \(\frac{28.29}{2}\) = 155
=> 28x + 406 = 155
=> 28x = 155 - 406 = -251
=> x = \(-\frac{251}{28}\)
Số cây số ở quãng đường AC là:
150 : 3 = 50 (cây)
(Chia 3 vì cây số ở quãng đưỡng AC = nửa quãng đường BC, vậy ta có 3 phần bằng nhau trên quãng đường AB)
Số cây số ở quãng đường BC là:
150 - 50 = 100 (cây)
Số cây số từ A đến B rồi quay lại C là:
150 + 100 = 250 (cây)
Đáp số: 250 cây số.
\(A=\left(1+3+5+...+2002\right).\left(135135.137-135.137137\right)\)
Đặt : \(C=135135.137-135.137137\)
\(C=\left(135.1001\right).137-135.137137\)
\(C=135.\left(137.1001\right)-135.137137\)
\(C=135.137137-135.137137\)
\(C=0\)
Thay vào ta có :
\(A=\left(1+3+5+...+2002\right).0\)
\(A=0\)
Vậy A = 0
\(B=1.2+2.3+3.4+...+99.100\)
\(3B=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3B=999900\)
\(\Rightarrow B=333300\)
Vậy B = 333300
Số số hạng của dãy số C là :
( 101 - 1 ) : 5 + 1 = 21 ( số hạng )
Tổng của dãy số C là :
( 101 + 1 ) . 21 : 2 = 1071
Đáp số : 1071
Bài 3:
Có: 42= 2 x 3 x 7
90= 2 x 32 x 5
=> UCLN( 42; 90) = 2 x 3 = 6
Vậy UCLN( 42; 90) = 6
Có: 22= 2 x 11
50= 52 x 2
=> BCNN( 22;50) = 52 x 2 x 11 = 550
Vậy BCNN(22;50)= 550
Bài 4:
a) -3< x < 4
=> Xϵ { -2 ; -1; 0 ; 1; 2; 3 }
Tổng của các số nguyên x là:
-2 + (-1) + 0 +1 +2 +3
= [(-2) + 2] [ (-1) + 1] + 3 + 0
= 0 + 0 + 3 + 0
= 3
b) Gọi số tổ là a ( tổ ) ( aϵ N* )
Vì cô giáo muốn chia đều số nam và số nữ thành các tổ nên a ϵ ƯC(68;72)
Mà a là lớn nhất
=> a = UCLN( 68;72)
Có: 68= 22 x 17
72 = 23 x 32
UCLN(68;72)= 22 = 4
=> a = 4
Vậy chia được nhiều nhất 4 tổ
Bạn tìm ước của 120 và tìm luôn bội của 12. Sau đó bạn tìm giao của hai tập hợp.
a) \(8⋮\left(x-2\right)\) \(\)
Ta có : 8 chia hết cho x - 2
=> x - 2 thuộc Ư(8) = { 1 ; 2 ; 4 ; 8 }
=> x thuộc { 3 ; 4 ; 6 ; 10 }
Vậy x thuộc { 3 ; 4 ; 6 ; 10 }
b) \(21⋮\left(2x+5\right)\)
Ta có : 21 chia hết cho 2x + 5
=> 2x + 5 thuộc Ư(21) = { 1 ; 3 ; 7 ; 21 }
=> 2x thuộc { - 4 ; - 2 ; 2 ; 16 }
=> x thuộc { - 2 ; - 1 ; 1 ; 8 }
Vậy x thuộc { - 2 ; - 1 ; 1 ; 8 }
c) \(4-\left(27-3\right)=x-\left(13-4\right)\)
\(4-24=x-9\)
\(\Rightarrow-20=x-9\)
\(x=-20+9\)
\(x=-11\)
Vậy \(x=-11\)
d) \(7-x=8+\left(-7\right)\)
\(7-x=1\)
\(x=7-1\)
\(x=6\)
Vậy \(x=6\)
e) \(2x-6=\left(-3\right)+\left(-7\right)\)
\(2x-6=-10\)
\(2x=-10+6\)
\(2x=-4\)
\(x=-4:2\)
\(x=-2\)
Vậy \(x=-2\)
Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0.
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b
c1: đo cạnh ab, cạnh bc, còn cạnh ac thì lấy ab+bc
c2: đo cạnh ab, cạnh ac, còn cạnh bc thì lấy ac-ab
c3: đo cạnh bc, cạnh ac, còn cạnh ab thì lấy ac-bc