Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cold Wind , Đinh Tuấn Việt, Kiệt ღ ๖ۣۜLý๖ۣۜ , Ngọc Mai , Nhật Minh,......bn có thể xem trong bảng xếp hạng nha
bn nên vào trang toán để hỏi nha, có nhìu bn giỏi mon toán lém
\(T=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+\left(\frac{x}{4}+\frac{1}{x}\right)+\left(\frac{x+y}{9}+\frac{1}{x+y}\right)+\frac{17}{9}\left(x+y\right)+\frac{7x}{9}-5\)
\(\ge0+0+2\sqrt{\frac{x}{4}\cdot\frac{1}{x}}+2\sqrt{\frac{x+y}{9}\cdot\frac{1}{x+y}}+\frac{17\cdot3}{9}+\frac{7\cdot2}{9}-5\)
\(=\frac{35}{9}\)
Đẳng thức xảy ra tại x=2;y=1
Đặt x = 2t
đưa bài toán về dạng:
\(T=4t^2+y^2+\frac{1}{2t}+\frac{1}{2t+y}\ge\left(t^2+t^2+y^2\right)+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)
\(\ge\frac{\left(2t+y\right)^2}{3}+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)
\(=\left(\frac{\left(2t+y\right)^2}{3}+\frac{9}{2t+y}+\frac{9}{2t+y}\right)+\left(2t^2+\frac{4}{2t}+\frac{4}{2t}\right)-\frac{17}{2t+y}-\frac{7}{2t}\)
\(\ge3.3+3.2-\frac{17}{3}-\frac{7}{2}=\frac{35}{6}\)
Dấu "=" xảy ra <=> y = t = 1 <=> y = 1 ; x = 2
a)\(\left(\frac{2}{3}+\frac{2}{5}\right)x=\frac{1}{5}-2\frac{1}{2}\)
\(\frac{16}{15}x=\frac{1}{5}-1\)
\(\frac{16}{15}x=-\frac{4}{5}\)
\(x=-\frac{4}{5}\div\frac{16}{15}\)
\(x=-\frac{3}{4}\)
b)\(\frac{4}{7}x-\frac{2}{3}=\frac{1}{5}\)
\(\frac{4}{7}x=\frac{1}{5}+\frac{2}{3}\)
\(\frac{4}{7}x=\frac{13}{15}\)
\(x=\frac{13}{15}\div\frac{4}{7}\)
\(x=\frac{91}{60}\)
\(\left(\frac{2}{3}+\frac{1}{5}\right)\)CHỨ HK PHẢI LÀ \(\left(\frac{2}{3}+\frac{2}{5}\right)\)ĐÂU Ạ
CHO MK XIN LỖI VÌ GHI SAI ĐẦU BÀI
a, \(x-\frac{5}{6}=\frac{-2}{3}\)
\(\Leftrightarrow x=\frac{1}{6}\)
b, \(\frac{-7}{5}+x=\frac{-4}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)
c, \(x-\frac{2}{5}=-\frac{1}{6}-\frac{3}{-4}\)
\(\Leftrightarrow x-\frac{2}{5}=-\frac{1}{6}+\frac{3}{4}\)
\(\Leftrightarrow x-\frac{2}{5}=\frac{7}{12}\Leftrightarrow x=\frac{59}{60}\)
a,\(\left(3x-4\right)\left(x-1\right)^3=0\)
\(=>\orbr{\begin{cases}3x-4=0\\x-1=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=\frac{4}{3}\\x=1\end{cases}}\)
b,\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=7450\)
\(=>x.100+\left(1+2+3+...+100\right)=7450\)
\(=>100x+5050=7450\)
\(=>100x=2400\)
\(=>x=24\)
1, A, x \(⋮\)21,35 và 0 < x < 115
x \(\in\)B( 21) = { 0 ; 21 ; 42 ; 63 ; 84 ; 105 ; 126 ; ... }
x \(\in\)B ( 35 ) = { 0 ; 35 ; 70 ; 105 ; 140 }
Mà x \(⋮\)21 , 35 và 0 < x < 115 nên x \(\in\){ 105 }
B, 48, 32 \(⋮\)x và x < 8
x e Ư( 48 ) = { 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 }
x e Ư ( 32 ) = { 1 ; 2 ; 4 ; 8 ; 16 ; 32 }
Mà x e Ư ( 42 , 32 ) và x < 8 nên x e { 2 ; 4 }
78\(\sqrt{2}\)\(\approx\)110,3