K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

Ta có: xy + x2y2 + x3y3 + ….. + x10y10

      = xy + (xy)2 + (xy)3 + ….. + (xy)10

Với x = -1 và y = 1 ta có: xy = -1.1 = -1

Thay vào đa thức:

-1 + (-1)2 + (-1)3 + ….. + (-1)10 = -1 + 1 + (-1) + 1 + … + (-1) + 1 = 0

6 tháng 3 2018

a)

Ta có \(xy+x^2y^2+x^3y^3+...+x^{10}y^{10}\\ =\left(xy+x^3y^3+x^5y^5+...+x^9y^9\right).\left(x^2y^2+x^4y^4+x^6y^6+...+x^{10}y^{10}\right)\)

Thay x= -1 và y= 1 vào biểu thức trên ta được\(\left(-1\right)1+\left(-1\right)^21^2+...+\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)1+\left(-1\right)^31^3+...+\left(-1\right)^91^9\right].\left[\left(-1\right)^21^2+\left(-1\right)^41^4+...+\left(-1\right)^{10}1^{10}\right]\\ =\left(-1-1-...-1\right)+\left(1+1+...+1\right)\\ =-5+5=0\)

b)

Ta có:\(xyz+x^2y^2z^2+x^3y^3z^3+...+x^{10}y^{10}z^{10}\\ =\left(xyz+x^3y^3z^3+x^5y^5z^5+...+x^9y^9z^9\right).\left(x^2y^2z^2+x^4y^4z^4+x^6y^6z^6+...+x^{10}y^{10}z^{10}\right)\)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được\(\left(-1\right)\left(-1\right)1+\left(-1\right)^2\left(-1\right)^21^2+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)\left(-1\right)1+\left(-1\right)^3\left(-1\right)^31^3+...+\left(-1\right)^9\left(-1\right)^91^9\right].\left[\left(-1\right)^2\left(-1\right)^21^2+\left(-1\right)^4\left(-1\right)^41^4+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\right]\\ =\left(1+1+...+1\right)+\left(1+1+...+1\right)\\ =5+5=10\)

6 tháng 9 2020

Ta có xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)

Thay x= -1 và y= 1 vào biểu thức trên ta được(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0

b)

Ta có:xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được(−1)(−1)1+(−1)2(−1)212+...+(−1)10(−1)10110=[(−1)(−1)1+(−1)3(−1)313+...+(−1)9(−1)919].[(−1)2(−1)212+(−1)4(−1)414+...+(−1)10(−1)10110]=(1+1+...+1)+(1+1+...+1)=5+5=10

20 tháng 3 2018

a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)

\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)

\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)

Thay x-y+3=0 vào A

\(A=x^2.0-y.0+0-1=-1\)

b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)

\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)

Thay x-y+3=0 vào B

\(B=x^2.0-xy.0+2.0-2=-2\)

13 tháng 5 2017

a) Thay x = 1 vào biểu thức x2-5x, ta được:

12-5.1 = -4

Vậy -4 là giá trị của thức x2-5x tại x = 1

Thay x = -1 vào biểu thức x2-5x, ta được:

(-1)2-5.(-1) = 6

Vậy 6 là giá trị của biểu thức x2-5x tại x=-1

Thay x = \(\dfrac{1}{2}\) vào biểu thức x2-5x, ta được:

(\(\dfrac{1}{2}\))2-5.\(\dfrac{1}{2}\) = -\(\dfrac{9}{4}\)

Vậy -\(\dfrac{9}{4}\) là giá trị của biểu thức x2-5x tại x =\(\dfrac{1}{2}\)

b) Thay x = -3, y = -5 vào biểu thức 3x2-xy, ta được:

3.(-3)2 - (-3).(-5) = 12

Vậy 12 là giá trị của biểu thức 3x2-xy tại x = -3, y = -5

c) Thay x = 1, y = -3 vào biểu thức 5-xy3, ta được:

5-1.(-3)3 = 32

Vậy 32 là giá trị của biểu thức 5-xy3 tại x = 1, y = -3

3 tháng 3 2017

y1 và y2 lần lượt bằng 8 và 6

còn x1, x2 lần lượt bằng -4 và -10

tick nhóe!

ahihi

24 tháng 4 2018

Ta có :\(\left(x-1\right)^4\ge0;\left(y+1\right)^4\ge0\)

Mà \(\left(x-1\right)^4+\left(y+1\right)^4=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\y+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)(1)

Thay (1) vào C ta có :

\(C=1^3+1.\left(-1\right)^3-1^3\left(-1\right)+\left(-1\right)^3\)

\(\Rightarrow C=1-1+1-1=0\)

Vậy...................................

19 tháng 4 2017

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3

Thay x = 5; y = 4 ta được:

A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy A = 129 tại x = 5 và y = 4.

b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.

Thay x = -1; y = -1 vào biểu thức ta được:

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.



22 tháng 1 2018

\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

=\(x^2+2xy+y^3\)

\(thếx=5;y=4\) \(ta\) \(có\)

= \(5^2+2.5.4+4^3\)

= 25 + 40 + 64

=129

b.

\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)

thế \(x=-1;y=-1\) ta có:

(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

= 1 - 1.1 +1.1 - 1.1 +1.1

= 1-1+1-1+1

= 1

1 tháng 5 2018

ko bít làm

12 tháng 4 2018

a) Thay x= -2 vào biểu thức trên ta có:

5.(-2)2 - 3.(-2) + 4.(-2) -16

= 5.4 + 6 - 8 - 16

=20 + 6 - 8 - 16

= 2

Ý a nka bn các ý cn lại cũng v thui

Ý d rút luỹ thừa bậc 2 ra ngoài còn xy2 nha!!!haha

12 tháng 4 2018

a/ Thay vào biểu thức tại x= -2, ta được:

5x2 - 3x + 4x - 16

= 5. (-2)2 - 3. (-2) + 4. (-2) - 16

= 20 - (-6) + (-8) - 16

= 2

Tớ làm câu a/ thôi rồi bạn tự làm đi nhé! dễ thôi mà.haha

25 tháng 4 2018

a)

\(x^3+x^2y+x^2-xy^2-y^3-y^2+2x+2y+3\\ =\left(x^3+x^2y+x^2\right)-\left(xy^2+y^3+y^2\right)+2x+2y+3\\ =x^2\left(x+y+1\right)-y^2\left(x+y+1\right)+\left(x+y+1\right)+\left(x+y+1\right)+1\\ =\left(x+y+1\right)\left(x^2-y^2\right)+0+0+1\\ =0\left(x^2-y^2\right)+1\\ =0+1=1\)

b)

\(x^4y+x^3y^2+x^3y-x-y\\ =x^3y\left(x+y+1\right)-x-y\\ =x^3y\times0-x-y=0-x-y\\ =-x-y-1+1=-\left(x+y+1\right)+1\\ =-0+1=1\)