K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

Đặt x2 = a (a ≥ 0), y2 = b (b ≥ 0)

Ta có: Giải sách bài tập Toán 7 | Giải sbt Toán 7 và a2b2 = 81.

Theo tính chất của dãy tỉ số bằng nhau ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Từ (1) và (2) suy ra a/9 = b ⇒ a = 9b

Do a2b2 = 81 nên (9b)2.b2 = 81 ⇒ 81b4 = 81 ⇒ b4 = 1 ⇒ b = 1 (vì b ≥ 0)

Suy ra a = 9. 1 = 9

Ta có x2 = 9 và y2 = 1. Suy ra x = 3 hoặc x = -3, y = 1 hoặc y = -1.

6 tháng 4 2020

\(\frac{x^2+y^2}{10}=\frac{x^2+2y}{7}\)

\(\Leftrightarrow7\left(x^2+y^2\right)=10\left(x^2-2y^2\right)\)

\(\Leftrightarrow-3x^2+27y^2=0\)

\(\Leftrightarrow-x^2+9y^2=0\)

\(\Leftrightarrow x^2=9y^2\)

\(x^4.y^4=81\Leftrightarrow x^2.y^2=9\Leftrightarrow9y^2.y^2=9\Leftrightarrow y^4=1\)

\(\Rightarrow y=\pm1=>x=\pm1\)

Vậy \(\left(x;y\right)=\left(1,1\right);\left(1;-1\right);\left(-1;-1\right);\left(-1;1\right)\)

Bài 2: 

\(\dfrac{x^2+y^2}{10}=\dfrac{x^2-2y^2}{7}\)

\(\Leftrightarrow7x^2+7y^2=10x^2-20y^2\)

\(\Leftrightarrow-3x^2=-27y^2\)

\(\Leftrightarrow x^2=9y^2\)

Theo đề, ta có: \(\left(x^2y^2\right)^2=81\)

\(\Leftrightarrow81y^8=81\)

=>y=1 hoặc y=-1

hay x=3 hoặc x=-3

31 tháng 5 2017

Đặt \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x^2+y^2=10k\left(1\right)\\x^2-2y^2=7k\left(2\right)\end{cases}}\)

Từ 2 ta có :

x2 = 7k + 2y2 

Thay ngược vào (1) , ta lại có :

7k + 2y2 + y2 = 10k

=> y2 = k

<=> x2 = 9k

Thay x2 , y2 vào biểu thức x4.y4 = 81

=> 81k2 . k2 = 81

=> k4 = 1

=> k = 1 hoặc = -1

Với k = 1 thì x = 3 hoặc -3 

               và y = 1 hoặc -1

Với k = -1 thì x,y không có giá trị thõa mãn 

15 tháng 7 2017
 

Đặt x2+y210 =x22y27 =k

{

x2+y2=10k(1)
x22y2=7k(2)

Từ 2 ta có :

x2 = 7k + 2y2 

Thay ngược vào (1) , ta lại có :

7k + 2y2 + y2 = 10k

=> y2 = k

<=> x2 = 9k

Thay x2 , y2 vào biểu thức x4.y4 = 81

=> 81k2 . k2 = 81

=> k4 = 1

=> k = 1 hoặc = -1

Với k = 1 thì x = 3 hoặc -3 

               và y = 1 hoặc -1

Với k = -1 thì x,y không có giá trị thõa mãn 

nha các bạn
 
14 tháng 2 2020

Ta có: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\)

\(\Leftrightarrow7x^2+7y^2=10x^2-20y^2\)

\(\Leftrightarrow27y^2=3x^2\)

\(\Leftrightarrow9y^2=x^2\)

\(\Leftrightarrow81y^4=x^4\)

Ta lại có: \(x^4y^4=81\)

\(\Rightarrow81y^4.y^4=81\)

\(\Leftrightarrow y^8=1\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=\pm1\Rightarrow x^2=9y^2=9\)

\(\Rightarrow x=\pm3\)

Pt có nghiệm \(\left(x,y\right)=\left\{\left(3;1\right);\left(-3;1\right);\left(3;-1\right);\left(-3;-1\right)\right\}\)

14 tháng 2 2020

Ta có: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}.\)

Đặt \(\left\{{}\begin{matrix}x^2=a\left(a\ge0\right)\\y^2=b\left(b\ge0\right)\end{matrix}\right.\)

\(\Rightarrow\frac{a+b}{10}=\frac{a-2b}{7}\)\(a^2.b^2=81.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{a+b-\left(a-2b\right)}{10-7}=\frac{a+b-a+2b}{3}=\frac{3b}{3}=b\) (1).

\(\frac{a+b}{10}=\frac{2a+2b}{20}=\frac{a-2b}{7}=\frac{2a+2b+a-2b}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a}{9}=b.\)

\(\Rightarrow a=9b.\)

\(a^2.b^2=81\)

\(\Rightarrow\left(9b\right)^2.b^2=81\)

\(\Rightarrow81b^2.b^2=81\)

\(\Rightarrow81.b^4=81\)

\(\Rightarrow b^4=81:81\)

\(\Rightarrow b^4=1\)

\(\Rightarrow b=1\) (vì \(b\ge0\)).

\(a=9b\)

\(\Rightarrow a=9.1\)

\(\Rightarrow a=9.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=9\\y^2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(3;1\right),\left(-3;-1\right).\)

Chúc bạn học tốt!