\(y^2\) = 8 \(\left(x-2016\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Bài 1:Nếu \(a=0\Rightarrow b^2=289\Rightarrow b=17\)(thỏa mãn)

Nếu \(a\ge1\) thì b\(\ge1\)nên b có dạng \(5k,5k+1,5k+2,5k+3,5k+4\)

               Xét b=5k thì \(b^2=25k^2⋮5\)

               Xét b=5k+1 thì \(b^2=\left(5k+1\right)^2=25k^2+10k+1\) chia 5 dư 1

              Xét  b=5k+2 thì \(b^2=\left(5k+2\right)^2=25k^2+20k+4\) chia 5 dư 4

            Xét b=5k+3  thì \(b^2=\left(5k+3\right)^2=25k^2+30k+9\) chia 5 dư 4

             Xét b=5k+4 thì \(b^2=\left(5k+4\right)^2=25k^2+40k+16\) chia 5 dư 1

Vậy với mọi \(b\ge1\) thì \(b^2\) chia 5 có số dư là 0,1,4

Mặt khác:\(a\ge1\Rightarrow10^a⋮5\)\(\Rightarrow10^a+288\) chia 5 dư 3 mà \(b^2\) chia 5 chỉ dư 0,1,4 (vô lý)

Vậy a=0,b=17 thỏa mãn

Bài 2:Vì \(\hept{\begin{cases}\left|x-3y+1\right|\ge0\\-\left(2y-0,5\right)^2\le0\end{cases}}\) mà \(\left|x-3y+1\right|=-\left(2y-0,5\right)^2\)

\(\Rightarrow\hept{\begin{cases}\left|x-3y+1\right|=0\\-\left(2y-0,5\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3y+1=0\\2y=0,5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+1=3y\\y=\frac{0,5}{2}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+1=3y\\y=\frac{1}{4}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+1=\frac{3}{4}\\y=\frac{1}{4}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=\frac{1}{4}\end{cases}}\)

18 tháng 3 2018

Bài 2 : 

Ta có : 

\(\left|x-3y+1\right|\ge0\)

\(-\left(2y-0,5\right)^2< 0\)

Mà \(\left|x-3y+1\right|=-\left(2y-0,5\right)^2\)

Vậy không có giá trị nào của x và  y thoã mãn đề bài 

Chúc bạn học tốt ~ 

5 tháng 2 2019

\(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)

\(=\frac{2^{12}.\left(3^5-3^4\right)}{2^{12}.\left(3^6+3^5\right)}\)

\(=\frac{3^5-3^4}{3^6+3^5}=\frac{3^4.\left(3-1\right)}{3^5\left(3+1\right)}\)

\(=\frac{3^4.2}{3^5.4}=\frac{3^4.2}{3^4.3.4}=\frac{2}{12}=\frac{1}{6}\)

P/s: Hoq chắc ạ (: Ms lp 6 lm đại

5 tháng 2 2019

\(\frac{x}{2}=\frac{y}{3}\)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)(1)

\(\frac{y}{4}=\frac{z}{5}\)

\(\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)(2)

Từ (1) (2)

 \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.8\\y=2.12\\z=2.15\end{cases}\Rightarrow}\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

3 tháng 7 2019

a) |-x + 2| = -|y + 9|

=> |-x + 2| + |y + 9| = 0

Ta có: |-x + 2| \(\ge\)\(\forall\)x

|y + 9| \(\ge\)\(\forall\)y

=> |-x + 2| + |y + 9| \(\ge\)\(\forall\)x; y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}-x+2=0\\y+9=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=-9\end{cases}}\)

Vậy ...

b) |3x + 4| + |2y - 10| \(\le\)0

Ta có: |3x +  4| \(\ge\)\(\forall\)x

        |2y - 10| \(\ge\)\(\forall\)y

=> |3x + 4| + |2y - 10| \(\ge\) 0 \(\forall\)x;y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}3x+4=0\\2y-10=0\end{cases}}\) <=> \(\hept{\begin{cases}3x=-4\\2y=10\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{4}{3}\\y=5\end{cases}}\)

vậy ...

c) |-x - 3| + |y + 7| < 0

Ta có: |-x - 3| \(\ge\)\(\forall\)x

      |y + 7| \(\ge\)\(\forall\)y

=> |-x - 3| + |y + 7| \(\ge\)\(\forall\)x; y

=> ko có giá trị x, y thõa mãn đb

24 tháng 7 2017

Ta có : \(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\Rightarrow x=\frac{3y}{5}\)

Thay \(x=\frac{3y}{5}\)vào biểu thức ta được : \(\left(\frac{3y}{5}\right)^2-y^2=8\)

\(\Leftrightarrow\frac{9y^2}{25}-y^2=8\Leftrightarrow9y^2-25y^2=8.25\Leftrightarrow-16y^2=200\Leftrightarrow y^2=-\frac{25}{5}\left(\text{vô lý}\right)\)

b) \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\)

Thay \(x=\frac{2y}{5}\)vào biểu thức ; ta có : \(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)

Với \(y=15\Rightarrow x=\frac{2.15}{5}=6\)

Vậy .....

24 tháng 7 2017

\(\frac{x}{2}=\frac{y}{5}\)và \(xy=90\)

đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k;y=5k\)

ta có : \(xy=2k\cdot5k=10k^2=90\)

\(\Rightarrow k^2=90:10=9\)

\(\Rightarrow\orbr{\begin{cases}k=3\\k=-3\end{cases}}\)

TH1: \(\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot5=15\end{cases}}\)

TH2: \(\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot5=-15\end{cases}}\)

10 tháng 12 2015

a. Theo t/c dãy tỉ số = nhau:

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)

=>\(\frac{x}{2}=6\Rightarrow x=6.2=12\)

=>\(\frac{y}{5}=6\Rightarrow y=6.5=30\)

Vậy x=12; y=30.

b. \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}\)

=> \(\left|x-0,25\right|=1\frac{2}{3}+\frac{5}{6}\)

=> \(\left|x-0,25\right|=\frac{5}{2}=2,5\)

+) x-0,25=2,5

=> x=2,5+0,25

=> x=2,75

+) x-0,25=-2,5

=> x=-2,5+0,25

=> x=-2,25

Vậy x \(\in\){-2,25; 2,75}.

c. y=kx

=> -17=k.8

=> k=-17/8

Vậy hệ số tỉ lệ là -17/8.

10 tháng 12 2015

a) \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)

=> x=12   ;   y = 30

b)  \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}=>\left|x-0,25\right|=\frac{5}{3}+\frac{5}{6}=\frac{5}{2}=2,5\)

=> x-0,25 = 2,5    hoac:  -2,5

=> x = 2,75      hoac x= -2,25

Vay: x la { 2,75  ;   -2,25 }

c) Ti le gi vay ban.

Neu thuan thi he so ti le la: \(-\frac{17}{8}\)

Neu nghich thi he so ti le la : -136

17 tháng 7 2018

29-28 = 256

17 tháng 7 2018

\(2^9-2^8=256\)

Ti ck mk nha

24 tháng 7 2016

a)\(5^x.\left(5^3\right)^2=625\)

\(5^x.5^6=5^4\)

\(5^x=5^{-2}\)

\(x=-2\)

b)\(27< 81^3:3^x< 243\)

\(3^3< \left(3^4\right)^3:3^x< 3^5\)

\(3^3< 3^{12}:3^x< 3^5\)

\(3^{12}:3^x=3^4\)

\(3^x=3^3\)

\(x=3\)

c)\(\left(5x+1\right)^2=\frac{36}{49}\) 

\(\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)

\(5x+1=\frac{6}{7}\)

\(5x=\frac{-1}{7}\)

\(x=\frac{-1}{35}\)

d)\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)

\(\left(x-\frac{2}{9}\right)^3=\left[\left(\frac{2}{3}\right)^2\right]^3\)

\(x-\frac{2}{9}=\frac{4}{9}\)

\(x=\frac{6}{9}=\frac{2}{3}\)

\(5^x.\left(5^3\right)^2=625\)

\(\Rightarrow5^x.5^6=5^4\)

\(\Rightarrow5^{x+6}=5^4\Rightarrow x+6=4\Rightarrow x=-2\)

Đề sai rồi bạn : Phải là :

 \(5^x:\left(5^3\right)^2=625\)

\(\Rightarrow5^x:5^6=5^4\)

\(\Rightarrow5^{x-6}=5^4\)

\(\Rightarrow x-6=4\Rightarrow x=10\)

Nhứng nếu đề đúng thì bạn có thể lấy KQ trên