Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, f(x) = x2 - 5x + 4
Ta có : a + b + c = 1 + (-5) + 4 = 0
=> f(1) = 12 - 5 + 4 = 0
Vậy x = 1 là một nghiệm của đa thức f(x)
b, f(x) = 2x2 + 3x + 1
Ta có : a - b + c = 2 - 3 + 1 = 0
=> f(-1) = 2 . (-1)2 + 3 . (-1) + 1 = 0
Vậy x = -1 là một nghiệm của đa thức f(x)
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
x^2-5x+4
=>x^2-4x-x+4=0
=>x(x-4)-(x-4)=0
=>(x-1)(x-4)=0
=>x=1 hoặc 4
\(x^2-5x+4=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(4x-4\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
*thu gọn đa thức f(x)
f(x)= 4x2+ 5x3- 3x2+ 4x4- x3+ 1- 4x3- 4x4
=4x4- 4x4+ 5x3- x3- 4x3+ 4x2- 3x2 +1
=x2+ 1
Chứng tỏ f(x) không có nghiệm
f(x)= x2+ 1
Ta có: x2\(\ge\)0 ( với mọi x\(\in\)R)
1 > 0
nên x2+ 1 > 0
mà x2 + 1 = 0 ( vô lí)
=> f(x) vô nghiệm
Ta có :
\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)
\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)
\(f\left(x\right)=x^2+1\)
Lại có :
\(x^2\ge0\)
\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)
Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 )
Chúc bạn học tốt ~
a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8
g(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6
f(x) + g(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8 + x5 + 7x4 + 2x3 + 3x2 - 5x - 6
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 3x2 + x2 ) + ( 4x - 5x ) + ( 8 - 6 )
= 4x2 - x + 2
g(x) - f(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 - ( -x5 - 7x4 - 2x3 + x2 + 4x + 8 )
= x5 + 7x4 + 2x3 + 3x2 - 5x - 6 + x5 + 7x4 + 2x3 - x2 - 4x - 8
= ( x5 + x5 ) + ( 7x4 + 7x4 ) + ( 2x3 + 2x3 ) + ( 3x2 - x2 ) + ( -5x - 4x ) + ( -6 - 8 )
= 2x5 + 14x4 + 4x3 + 2x2 -9x - 14
Đặt H(x) = g(x) + f(x)
=> H(x) = 4x2 - x + 2
H(x) = 0 <=> 4x2 - x + 2 = 0
<=> x(4x - 1) = -2
x | -1 | -2 | 1 | 2 |
4x-1 | 2 | 1 | -2 | -1 |
x | 1/4 | 1/2 | -1/4 | 0 |
loại | loại | loại | loại |
=> Không có giá trị x thỏa mãn
Vậy H(x) vô nghiệm
Mình chỉ biết làm thế này thôi
a) f(x) = 5x2+2x-x2+8-4x2
= (5x2-x2-4x2)+2x+8
= 2x+8
b) f(x)=2x+8
Để đa thức f(x) có nghiệm thì f(x) = 0
hay 2x+8=0
2x = -8
x = -4
Vậy x = -4 là nghiệm của đa thức f(x)
tick mk nk!
Ta có :
\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)
\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)
\(f\left(x\right)=x^2+1\)
Lại có :
\(x^2\ge0\)
\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)
Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 )
Chúc bạn học tốt ~
1) Để đa thức f(x) có nghiệm thì:
\(x^3+2x^2+ax+1=0\)
\(f\left(-2\right)=\left(-2\right)^3+2\left(-2\right)^2+a\left(-2\right)+1=0\)
\(\Rightarrow-8+8-2a+1=0\)
\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)
Vậy a = \(\dfrac{1}{2}\).
2) Để đa thức f(x) có nghiệm thì:
\(x^2+ax+b=0\)
\(f\left(1\right)=1^2+a.1+b=0\Rightarrow a+b+1=0\)(1)
\(f\left(2\right)=2^2+a.2+b=0\Rightarrow2a+b+4=0\)
\(f\left(2\right)-f\left(1\right)=\left(2a+b+4\right)-\left(a+b+1\right)=0\)
\(\Rightarrow2a+b+4-a-b-1=0\)
\(\Rightarrow a+3=0\Rightarrow a=-3\)
Thay vào (1) ta có: -3 + b + 1 =0
\(\Rightarrow\) b - 2 = 0 \(\Rightarrow\) b = 2
Vậy a = -3; b = 2.
1) Ta có: x = -2 là nghiệm của f(x)
\(\Rightarrow f\left(-2\right)=\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=0\)
\(\Rightarrow f\left(-2\right)=-8+8-2a+1=0\)
\(\Rightarrow-2a+1=0\)
\(\Rightarrow-2a=-1\)
\(\Rightarrow a=0,5\)
2) Ta có: x = 1 là nghiệm của f (x)
\(\Rightarrow f\left(1\right)=1^2+a.1+b=0\)
\(\Rightarrow1+a+b=0\)
Ta có: x = 2 là một nghiệm của f (x)
\(\Rightarrow f\left(2\right)=2^2+a.2+b=0\)
\(\Rightarrow4+2a+b=0\)
\(\Rightarrow1+a+b=4+2a+b\)
\(\Rightarrow1+a+b-4-2a-b=0\)
\(\Rightarrow-3-a=0\Rightarrow a=-3\)
\(\Rightarrow1-3+b=0\Rightarrow b=2\)
Đa thức f(x) = x2 – 5x + 4 có dạng ax2 + bx+ c trong đó hệ số a = 1, b = -5, c = 4
Ta có: a + b + c = 1 + (-5) + 4 = 1 – 5 + 4 = 0
Theo bài 46, vì a + b + c = 0 nên đa thức f(x) = x2 – 5x + 4 có nghiệm x = 1