K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

1) Để đa thức f(x) có nghiệm thì:

\(x^3+2x^2+ax+1=0\)

\(f\left(-2\right)=\left(-2\right)^3+2\left(-2\right)^2+a\left(-2\right)+1=0\)

\(\Rightarrow-8+8-2a+1=0\)

\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)

Vậy a = \(\dfrac{1}{2}\).

2) Để đa thức f(x) có nghiệm thì:

\(x^2+ax+b=0\)

\(f\left(1\right)=1^2+a.1+b=0\Rightarrow a+b+1=0\)(1)

\(f\left(2\right)=2^2+a.2+b=0\Rightarrow2a+b+4=0\)

\(f\left(2\right)-f\left(1\right)=\left(2a+b+4\right)-\left(a+b+1\right)=0\)

\(\Rightarrow2a+b+4-a-b-1=0\)

\(\Rightarrow a+3=0\Rightarrow a=-3\)

Thay vào (1) ta có: -3 + b + 1 =0

\(\Rightarrow\) b - 2 = 0 \(\Rightarrow\) b = 2

Vậy a = -3; b = 2.

14 tháng 8 2017

1) Ta có: x = -2 là nghiệm của f(x)

\(\Rightarrow f\left(-2\right)=\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=0\)

\(\Rightarrow f\left(-2\right)=-8+8-2a+1=0\)

\(\Rightarrow-2a+1=0\)

\(\Rightarrow-2a=-1\)

\(\Rightarrow a=0,5\)

2) Ta có: x = 1 là nghiệm của f (x)

\(\Rightarrow f\left(1\right)=1^2+a.1+b=0\)

\(\Rightarrow1+a+b=0\)

Ta có: x = 2 là một nghiệm của f (x)

\(\Rightarrow f\left(2\right)=2^2+a.2+b=0\)

\(\Rightarrow4+2a+b=0\)

\(\Rightarrow1+a+b=4+2a+b\)

\(\Rightarrow1+a+b-4-2a-b=0\)

\(\Rightarrow-3-a=0\Rightarrow a=-3\)

\(\Rightarrow1-3+b=0\Rightarrow b=2\)

14 tháng 8 2017

1. Thay x = -2 vào \(f\left(x\right)\), ta có:

\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0

=> -8 + 8 - 2a + 1 = 0

=> -2a +1 = 0

=> -2a = -1

=> a = \(\frac{1}{2}\)

Vậy a = \(\frac{1}{2}\)

2. * Thay x = 1 vào \(f\left(x\right)\), ta có:

1+ 1.a + b = 1 + a + b = 0    ( 1)

* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:

22 + 2.a + b =  4 + 2a + b =  0  ( 2)

* Lấy    (2 )   -   ( 1)  , ta có:

 ( 4 + 2a + b ) - ( 1 + a + b ) = 3  + a 

=> 3 + a = 0

=> a = -3

* 1 + a + b = 0 

=> 1 - 3 + b = 0

=> b = -1 + 3 = -2

Vậy a= -3  và b= -2

8 tháng 4 2019

a = -3

b = -2

Hok tốt

17 tháng 5 2018

Đa thức  f(x)  có 2 nghiệm là x = 1;  x = -1  nên ta có:

\(f\left(1\right)=1+a+b-2=0\)             \(\Leftrightarrow\)\(a+b=1\)

\(f\left(-1\right)=1+a-b-2=0\)  \(\Leftrightarrow\) \(a-b=1\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)

Vậy...

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

Câu 3:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)

=>a=-3; b=-9

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha