Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x + y – 1 = 0 => 2x + y = 1 có vô số giá trị
Các cặp giá trị có dạng (x∈ R; y = 1 – 2x)
Ví dụ: (x = 0; y =1); (x = 1; y = -1); ….
b) x – y – 3 => x – y = 3 có vô só giá trị
Các cặp giá trị có dạng (x∈ R; y = x – 3)
Ví dụ: (x = 0; y = -3); (x = 1; y = -2); ….
a) 2x + y - 1 = 0
giả sử nếu x = 3 thì ta có
2*3 + y - 1 =0
6-y+1=0
7-y=0
y=7
Vậy x=3 thì y = 7
b) x - y -3 = 0
Gỉa sử x = 4 thì ta có
4 - y - 3 = 0
1 - y = 0
y = 1
Vậy nếu x = 4 thì y = 1
Ta có: 2x + y – 1 = 0 ⇔ 2x + y = 1
Có vô số giá trị của x và y để biểu thức trên xảy ra
Các cặp giá trị có dạng (x ∈R, y = 1 – 2x)
Chẳng hạn: (x = 0; y = 1); (x = 1; y = -1)
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)
\(< =>2x+2=12x-3\)
\(< =>10x=5\)\(< =>x=\frac{1}{2}\)
khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)
\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)
xong nhe
Cái này thì EZ mà sư phụ : ]
a) 2(x+1) = 3(4x-1)
=> 2x + 2 = 12x - 3
=> 2x - 12x = -3 - 2
=> -10x = -5
=> x = 1/2
Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(x-5=0\Rightarrow x=5\)
\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )
\(1.\frac{x-7}{2}< 0\)
\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)
\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)
\(S=\left\{xlx< 7\right\}\)
2)\(\)Đề biểu thức sau nhân giá trị âm thì :
\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)
\(S=\left\{xlx< 3\right\}\)
3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:
\(x^2+x\ge0\)
\(\Leftrightarrow x\left(x+1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)
\(S=\left\{xlx\ge-1\right\}\)
Bài 4:
\(M\left(x\right)=-2x^2+mx-7m+3\)
\(\Rightarrow M\left(-1\right)=-2.\left(-1\right)^2+m.\left(-1\right)-7m+3\)
\(=-2-m-7m+3\)
Mà \(M\left(-1\right)=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-2-8m=-3\)
\(\Rightarrow8m=\left(-2\right)-\left(-3\right)\)
\(\Rightarrow8m=1\)
\(\Rightarrow m=\frac{1}{8}\)
a. x = 2
b. x = -1
c. y = 2
d. x = 1
e. y= -2018
a)\(\left(x-2\right)\left(x-3\right)=0\)
Hoặc \(x-2=0\Leftrightarrow x=2\)(nhận)
Hoặc \(x-3=0\Leftrightarrow x=3\)(nhận)
b)\(\left(x+1\right)\left(x^2+1\right)=0\)
Hoặc \(x+1=0\Leftrightarrow x=-1\)(nhận)
Hoặc\(x^2+1=0\Leftrightarrow x^2=-1\)(vô lí)
c)\(5.y^2-20=0\)
\(\Rightarrow5.y^2=20\)
\(\Rightarrow y^2=4\)
\(\Rightarrow\hept{\begin{cases}y=2\\y=-2\end{cases}}\)
d)\(|x-2|-1=0\)
\(\Rightarrow|x-2|=1\)
\(\Rightarrow\hept{\begin{cases}x-2=1\\x-2=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=1\end{cases}}\)
e)\(|y-1|-2019=0\)
\(\Rightarrow|y-1|=2019\)
\(\Rightarrow\hept{\begin{cases}y-1=2019\\y-1=-2019\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2020\\y=-2018\end{cases}}\)
HOK TOT
Ta có: x – y – 3 = 0 ⇔ x – y = 3
Có vô số giá trị của x và y để biểu thức trên xảy ra
Các cặp giá trị có dạng (x ∈R, y = x – 3)
Chẳng hạn: (x = 0; y = -3); (x = 1; y = -2)