K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=10\\c=-24\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-b=-5\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=5\\c=0\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=1-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\c=-1\end{matrix}\right.\)

d: \(\left\{{}\begin{matrix}x_1+x_2=3-\dfrac{1}{2}=\dfrac{5}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{5}{2}\\c=-\dfrac{3}{2}\end{matrix}\right.\)

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z

21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0

21 tháng 4 2020

Gọi nghiệm chung của 2 phương trình là m

Ta có:\(m^2+am+1=0;m^2+bm+17=0\)

\(\Rightarrow2m^2+m\left(a+b\right)+18=0\)

Xét \(\Delta=\left(a+b\right)^2-144\ge0\Rightarrow\left|a+b\right|\ge12\)

Mà \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)

Xét \(a+b=12\Rightarrow.....\)

Xét \(a+b=-12\Rightarrow....\)

Mấy chỗ ..... bạn tự làm nốt

Để phương trình có nghiệm cần : \(\(\(\(\Delta\ge0\)\)\)\)

hay \(\(\(\(\orbr{\begin{cases}a\ge2\\a\le-2\end{cases}}\)\)\)\)\(\(\(\(\orbr{\begin{cases}b\ge2\sqrt{17}\\b\le-2\sqrt{17}\end{cases}\left(\cdot\right)}\)\)\)\)

Gọi \(\(\(\(t\)\)\)\)là nghiệm chung 2 phương trình , ta có :

\(\(\(\(\hept{\begin{cases}t^2+t.a+1=0\\t^2+t.b+17=0\end{cases}}\)\)\)\)

\(\(\(\(\Rightarrow t\left(a-b\right)-16=0\Rightarrow a-b=\frac{16}{t}\)\)\)\)

Giải phương trình \(\(\(\(\left(1\right)\)\)\)\): tìm \(\(\(\(t\)\)\)\)theo \(a\):

\(\(\(\(t=\frac{-a\pm\sqrt{a^2-4}}{2}\Rightarrow b=a-\frac{32}{-a\pm\sqrt{a^2-4}}\)\)\)\)

Kết hợp với \(\(\(\(\left(\cdot\right)\)\)\)\): \(\(\(\(b\in(-\infty;-2\sqrt{17}]\)\)\)\)\(\(\(\([2\sqrt{17};+\infty)\)\)\)\)

+) Với \(\(\(\(b=a-\frac{32}{\sqrt{a^2-4}-a}=\frac{544a+\sqrt{a^2-4}}{32}\)\)\)\)

Nếu \(\(\(\(a\ge2\)\)\)\)thì \(\(\(b\ge18\left(tm\right)\)\)\)

Nếu \(\(\(\(a\le-2\)\)\)\), Ta phải chứng minh \(\(\(\(32a+\sqrt{a^2-4}\le-4\sqrt{17}\)\)\)\)hay \(\(\(\(32a+4\sqrt{17}\le-\sqrt{a^2-4}\)\)\)\)

____________cạn, hình như sai ở đâu , để xem lại________

_Sorry_

_Minh ngụy_

___Giải PT (1), tìm t theo a :_

.....................

\(a\ge2\Rightarrow b\ge18\left(tm\right)\)

\(a\le2\Rightarrow......................\)(luôn đúng với mọi \(b\))

+) Nếu \(b=a-\frac{32}{-a-\sqrt{a^2-4}}=\frac{544a-\sqrt{a^2-4}}{32}\). cũng tương tự như trên , thỏa mãn với 

\(a\in(-\infty;-2]\)U  \([2;+\infty)\)

Như vậy , tìm được b theo a \(b=\frac{544a\pm\sqrt{a^2-4}}{32}\)

Suy ra \(|a|+|b|=a+\frac{544+\sqrt{a^2-4}}{32}\)

Giờ chỉ việc xét \(|a|\in[2;+\infty)\)là ra min và a,b nha

_Minh ngụy_