\(x^2+bx+c=0\) và \(x^2+b_1.x+c_1=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

\(ax^2+bx+c=0\)

Do phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)

\(\Rightarrow b,c\) trái đấu

Xét \(cx^2+bx+a=0\)

Giả sử phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )

Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt

\(\Rightarrow\) đpcm

Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )

Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )

Từ ( 1 ) và ( 2 )

Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )

7 tháng 2 2021

a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1

\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)

Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)

b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)

Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)

Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)

6 tháng 6 2019

1) Ta có : \(\Delta'=b'^2-ac=\left(-m\right)^2-1\cdot\left(m-2\right)=m^2-m+2\)

\(=m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vậy pt luôn có 2 nghiệm phân biệt

2) Phương trình luôn có 2 nghiệm phân biệt :

\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{m+\sqrt{\Delta'}}{1}=m+\sqrt{\Delta'}\\x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{m-\sqrt{\Delta'}}{1}=m-\sqrt{\Delta'}\end{cases}}\)

Theo đề bài : \(x_1-x_2=m+\sqrt{\Delta'}-m+\sqrt{\Delta'}=2\sqrt{5}\)

\(\Leftrightarrow2\sqrt{\Delta'}=2\sqrt{5}\)

\(\Leftrightarrow\sqrt{\Delta'}=\sqrt{5}\)

\(\Leftrightarrow\Delta'=5\)

\(\Leftrightarrow m^2-m+2=5\)

\(\Leftrightarrow m^2-m-3=0\)

\(\Leftrightarrow m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4}-\frac{13}{4}=0\)

\(\Leftrightarrow\left(m-\frac{1}{2}\right)^2=\frac{13}{4}=\left(\frac{\pm\sqrt{13}}{2}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{13}+1}{2}\\m=\frac{-\sqrt{13}+1}{2}\end{cases}}\)

Vậy....

6 tháng 6 2019

phần 2 bạn sai rồi phong ơi

31 tháng 12 2017

ta có phương trình x^2 +3x +m =0 

nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4

theo Viét  nếu x1 và x2 là 2 nghiệm của pt thì 

x1 +x2 =-3 (1)và

x1*x2=m  => 2x1*x2 =2m (2)

=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )

mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có

31 +2m =9 

m = -11

31 tháng 12 2017

vưa nãy mình -   nhầm 31 + 2m =9  thì m= -12 mới phải (hi  hi )

22 tháng 5 2016

a) đenta=b^2-4c

2b+4c=-1=>c=-1-2b)/4

thay vô chứng minh nó lớn hơn 0

22 tháng 5 2016

x1+x2=b

x1x2=c

ta có x1=2x2

thay vô tìm x1;x2 theo b,c rồi thay vô 

mk tính được x1=2x;x2=b/3 thay cái này vô x1-2x2=0 tìm ra b

x1=căn(c/2);x2=căn(2c) thay vô cái x1-2x2=0 tìm ra c