Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AB=BC.cos60^0=a\) ; \(AC=BC.sin60^0=a\sqrt{3}\)
\(AH=\frac{AB.AC}{BC}=\frac{a\sqrt{3}}{2}\)
a/ Do \(SH\perp\left(ABC\right)\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC) \(\Rightarrow\widehat{SAH}=60^0\)
\(\Rightarrow SH=AH.tan60^0=\frac{3a}{2}\)
b/ \(AC^2=HC.BC\Rightarrow HC=\frac{AB^2}{BC}=\frac{3a}{2}\)
\(EH||AB\Rightarrow\frac{EH}{AB}=\frac{HC}{BC}\Rightarrow EH=\frac{AB.HC}{BC}=\frac{3a}{4}\)
Do \(SH\perp\left(ABC\right)\Rightarrow\widehat{SEH}\) là góc giữa SE và (ABC)
\(tan\widehat{SEH}=\frac{SH}{EH}=2\)
c/ Không biết (SH3) là gì bạn?
\(\Delta ABC\) đều \(\Rightarrow AM\perp BC\) (1)
Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\) (2)
(1);(2) \(\Rightarrow BC\perp\left(SAM\right)\)
b/ \(BC\perp\left(SAM\right)\) mà BC là giao tuyến của (SBC) và (ABC)
\(\Rightarrow\widehat{SMA}\) là góc giữa (SBC) và (ABC)
\(AM=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\Rightarrow tan\widehat{SMA}=\frac{SA}{AM}=2\)
\(\Rightarrow\widehat{SMA}\approx63^026'\)
c/ Từ A kẻ \(AH\perp SM\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)
\(\frac{1}{AH^2}=\frac{1}{AM^2}+\frac{1}{SA^2}\Rightarrow AH=\frac{AM.SA}{\sqrt{AM^2+SA^2}}=\frac{a\sqrt{15}}{5}\)
Đáp án A
Do SA ⊥ (ABC) tại A nên A là hình chiếu của S lênmặt phẳng (ABC) kéo theo AE là hình chiếu của AE lên mặt phẳng (ABC).
Áp dụng định lý Py-ta-go trong ∆ S A E vuông tại B, ta có:
Trong ∆ S A E vuông tại A SA ⊥ (ABC) nên SA ⊥ AE, ta có: