K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

Đáp án D

*Đối với dạng toán phản ứng hạt nhân, không kem theo bức xạ γ  ta đi đến phương pháp tổng quát.

Hạt A (đạn) bắn vào hạt B đứng yên (bia) sinh ra hai hạt C và D thì áp dụng định luật bảo toàn động lượng: 

p A = p c + p D ( I )

ĐL bảo toàn và chuyển hóa năng lượng: 

Xét bài toán ở đã cho. Áp dụng định luật bảo toàn năng lượng:

Chú ý: 1MeV=931,5uc2

9 tháng 10 2018

18 tháng 12 2019

Đáp án D

p 1 1 + L i → X + X

16 tháng 1 2019

 

6 tháng 8 2019

Đáp án A

6 tháng 5 2019

Đáp án D

8 tháng 4 2016

\(_2^4 He + _{13}^{27}Al \rightarrow _{15}^{30}P + _0^1n\)

Phản ứng thu năng lượng 

\( K_{He} - (K_{P}+K_{n} )= 2,7MeV.(*)\)

Lại có  \(\overrightarrow v_P = \overrightarrow v_n .(1)\)

=> \(v_P = v_n\)

=> \(\frac{K_P}{K_n} = 30 .(2)\)

Áp dụng định luật bảo toàn động lượng trước và sau phản ứng

\(\overrightarrow P_{He} = \overrightarrow P_{P} + \overrightarrow P_{n} \)

Do \(\overrightarrow P_{P} \uparrow \uparrow \overrightarrow P_{n}\) 

=> \(P_{He} = P_{P} + P_{n} \)

=> \(m_{He}.v_{He} = (m_{P}+ m_n)v_P=31m_nv\) (do \(v_P = v_n = v\))

=> \(K_{He} = \frac{31^2}{4}K_n.(3)\)

Thay (2) và (3) vào (*) ta có

 \(K_{He}-31K_n= 2,7.\)

=> \(K_{He} = \frac{2,7}{1-4/31} = 3,1MeV.\)

 

 

 

1 tháng 4 2017

Khe=31^2/4Kn lam sao ra dc nhu the a

6 tháng 4 2016

\(_1^1p + _3^7 Li \rightarrow _2^4He+_2^4He\)

\(W_{tỏa} = (m_t-m_s)c^2 =( m_{Li}+m_p - 2m_{He}).931=17,4097MeV.\)

Số hạt nhân \(_2^4He\) trong 1,5 g heli là \(N= nN_A= \frac{m}{A}.N_A = \frac{1,5}{4}.6,02.10^{23}= 2,2575.10^{23} \)(hạt)

      Mỗi phản ứng tạo ra 2 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 17,4097 MeV

=> Để tạo ra 2,2572.1023 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 

                         \(W = \frac{17,4097.2,2575.10^{23}}{2} = 1,965.10^{24}MeV.\)

 

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)

\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.

\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)

=> \(K_p +K_O = 6,48905MeV. (1)\)

Áp dụng định luật bảo toàn động lượng

P P α P p O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{O}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)

Từ (1) và (2) giải hệ phương trình ta được

\(K_p = 4,414MeV; K_O = 2,075 MeV.\)

 

 

 

19 tháng 2 2018

Phương pháp:

Sử dụng định luật bảo toàn điện tích và số khối để viết phương trình phản ứng hạt nhân

Sử dụng định luật bảo toàn động lượng; định lí hàm số cos trong tam giác

Năng lượng toả ra của phản ứng Q = Ks – Kt   (Kt và Ks lần lượt là tổng động năng của các hạt trước và sau phản ứng hạt nhân.

Cách giải:

Phương trình phản ứng hạt nhân:  p 1 1 + Li 3 7 → 2 He 2 4

Năng lượng toả ra của phản ứng: Q = 2Kα – Kp

Kp = 5,5 MeV

Định luật bảo toàn động lượng:  p p → = p α 1 → + p α 2 →

Áp dụng định lí hàm số cos ta có:

Þ Năng lượng toả ra của phản ứng: Q = 17,3 (MeV)

Đáp án C