Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 2 nghiệm phân biệt khi
\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)
\(\Leftrightarrow m\ne-1\)
Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)
Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)
<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)
Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán
\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)
\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)
\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)
\(\Leftrightarrow m\ge-\dfrac{8}{3}\)
Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)
bài này có lập được bảng biến thiên, nhưng chắc chưa học nên làm cách cơ bản
ta có \(\frac{x^2}{x^2+yz+x+1}\le\frac{x^2}{2x\sqrt{yz+1}+x}=\frac{x}{2\sqrt{yz+1}+1}\) dấu "=" xảy ra khi x2=yz+1
ta lại có \(2=x^2+y^2+z^2=\left(x+y+z\right)^3-2x\left(y+z\right)-2yz\ge\left(x+y+z\right)^3-\frac{\left(x+y+z\right)^2}{2}-2yz\)
\(\Rightarrow\left(x+y+z\right)^2\le4\left(1+yz\right)\Rightarrow x+y+z\le2\sqrt{1+yz}\)
\(\Rightarrow\frac{y+z}{x+y+z+1}=1-\frac{x+1}{x+y+z+1}\le1-\frac{x+1}{2\sqrt{yz+1}+1}\)
do đó \(P\le\frac{x}{2\sqrt{yz+1}+1}+1-\frac{x+1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}=1-\frac{1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}\)
\(\le1-\frac{1}{yz+1+1+1}-\frac{1+yz}{9}=\frac{11}{9}-\left(\frac{1}{yz+3}+\frac{yz+3}{9}\right)\le\frac{11}{9}-\frac{2}{3}=\frac{5}{9}\)
dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1;y=1;z=0\\x=1;y=0;z=1\end{cases}}\)
\(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)
\(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)
Đặt \(\hept{\begin{cases}x+1=u\\y-2=v\end{cases}}\Rightarrow A=\sqrt{u^4+1}+\sqrt{v^4+1}\)(với \(u,v\inℝ\))
Điều kiện đã cho ban đầu trở thành \(\left(u+1\right)\left(v+1\right)=\frac{9}{4}\)
\(\Leftrightarrow uv+u+v+1=\frac{9}{4}\Leftrightarrow uv+u+v=\frac{5}{4}\)
Ta có: \(\hept{\begin{cases}\left(2u-1\right)^2\ge0\forall u\inℝ\\\left(2v-1\right)^2\ge0\forall v\inℝ\end{cases}}\Leftrightarrow\hept{\begin{cases}4u^2-4u+1\ge0\\4v^2-4v+1\ge0\end{cases}}\forall u,v\inℝ\)
\(\Rightarrow\hept{\begin{cases}4u^2+1\ge4u\\4v^2+1\ge4v\end{cases}}\Rightarrow u^2+v^2\ge u+v-\frac{1}{2}\forall u,v\inℝ\)(*)
và \(\left(u-v\right)^2\ge0\forall u,v\inℝ\Leftrightarrow u^2-2uv+v^2\ge0\forall u,v\inℝ\)
\(\Rightarrow u^2+v^2\ge2uv\forall u,v\inℝ\Leftrightarrow\frac{1}{2}\left(u^2+v^2\right)\ge uv\forall u,v\inℝ\)(**)
Cộng theo vế của (*) và (**), ta được: \(\frac{3}{2}\left(u^2+v^2\right)\ge uv+u+v-\frac{1}{2}=\frac{5}{4}-\frac{1}{2}=\frac{3}{4}\)
\(\Rightarrow u^2+v^2\ge\frac{1}{2}\)(**
Áp dụng bất đẳng thức Minkowski, ta được:
\(A=\sqrt{u^4+1}+\sqrt{v^4+1}\ge\sqrt{\left(u^2+v^2\right)^2+\left(1+1\right)^2}\)
\(=\sqrt{\left(u^2+v^2\right)^2+4}\ge\sqrt{\left(\frac{1}{2}\right)^2+4}=\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)
Đẳng thức xảy ra khi \(u=v=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{5}{2}\)
Vậy GTNN của A là \(\frac{\sqrt{17}}{2}\)đạt được khi \(x=-\frac{1}{2};y=\frac{5}{2}\)
Đặt \(a=2+x;b=y-1\) thì \(ab=\frac{9}{4}\)
Thì \(\sqrt{x^4+4x^3+6x^2+4x+2}=\sqrt{a^4-4a^3+6a^2-4a+2}\)
và \(\sqrt{y^4-8y^3+24y^2-32y+17}=\sqrt{b^4-4b^3+6b^2-4b+2}\) (cái này dùng phương pháp đồng nhất hệ số là xong)
Vậy ta tìm Min \(A=\sqrt{a^4-4a^3+6a^2-4a+2}+\sqrt{b^4-4b^3+6b^2-4b+2}\)
\(=\sqrt{\left(a^4-4a^3+4a^2\right)+2\left(a^2-2a+1\right)}+\sqrt{\left(b^4-4b^3+4b^2\right)+2\left(b^2-2b+1\right)}\)
\(=\sqrt{\left(a^2-2a\right)^2+\left[\sqrt{2}\left(a-1\right)\right]^2}+\sqrt{\left(b^2-2b\right)^2+\left[\sqrt{2}\left(b-1\right)\right]^2}\)
\(\ge\sqrt{\left(a^2+b^2-2a-2b\right)^2+2\left(a+b-2\right)^2}\)
\(\ge\sqrt{\left[\frac{\left(a+b\right)^2}{2}-2\left(a+b\right)\right]^2+2\left(a+b-2\right)^2}\)
\(=\sqrt{\left(\frac{t^2}{2}-2t\right)^2+2\left(t-2\right)^2}\left(t=a+b\ge2\sqrt{ab}=3\right)\)
\(=\sqrt{\frac{1}{4}\left(t-1\right)\left(t-3\right)\left(t^2-4t+5\right)+\frac{17}{4}}\ge\frac{\sqrt{17}}{2}\)
Trình bày hơi lủng củng, sr.
Ta có: \(x^2-5x+3=0\)
Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)
a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)
b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)
c) \(C=\left|x_1-x_2\right|\)>0
=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)
=> C = căn 13
d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)
e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)
g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)
\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)
a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)
\(=6-3b\) (vì b < 2 )
b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\)
\(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)
Đáp án là D
3 + x = 3
⇔ 3 + x = 9 ⇔ x = 6 ⇔ x = 36