K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )

29 tháng 7 2018

b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)

                                                         \(=6-3b\) (vì b < 2 )

b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\) 

                                         \(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)

17 tháng 5 2019

đề bài là rút gon biểu thức nhé

17 tháng 5 2019

\(\sqrt{9\left(b-2\right)^2}=\sqrt{9}.\sqrt{\left(b-2\right)^2}=3.\left|b-2\right|\)

\(\sqrt{a^2\left(a+1\right)^2}=\sqrt{a^2}.\sqrt{\left(a+1\right)^2}=\left|a\right|.\left|a+1\right|\) Nhưng do a > 0

 Nên: \(\left|a\right|.\left|a+1\right|=a.\left(a+1\right)=a^2+a\)

\(\sqrt{b^2\left(b-1\right)^2}=\sqrt{b^2}.\sqrt{\left(b-1\right)^2}=\left|b\right|.\left|\left(b-1\right)\right|\)

Em mới lớp 5 thôi sai đừng trách :v

Chúc anh học tốt !!!

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
19 tháng 10 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(=\left[\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)

\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(x-1\right)^2}{2}\)

\(=\left[\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}.\left(\sqrt{x}-1\right)}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)

b) Với \(0< x< 1\)\(\Rightarrow0< \sqrt{x}< 1\)

\(\Rightarrow\sqrt{x}-1< 0\)

mà \(\sqrt{x}>0\)\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-1\right)< 0\)

\(\Rightarrow-\sqrt{x}.\left(\sqrt{x}-1\right)>0\)\(\Rightarrow P>0\)( đpcm )

c) \(P=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}\)

\(=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)

\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\)\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)\(\Leftrightarrow x=\frac{1}{4}\)( thỏa mãn ĐKXĐ )

Vậy \(maxP=\frac{1}{4}\)\(\Leftrightarrow x=\frac{1}{4}\)

19 tháng 10 2020

ĐKXĐ \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)

a,  Ta có \(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)

               \(P=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)

              \(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)

             \(P=\frac{2\sqrt{x}-2x}{\sqrt{2}}\)

             \(P=\sqrt{2x}-\sqrt{2}x\)

             \(P=\sqrt{2x}\left(1-\sqrt{x}\right)\)

b,        Vì \(0< x< 1\Rightarrow\sqrt{x}< 1\Rightarrow1-\sqrt{x}< 1\)

                 \(\Rightarrow\sqrt{2x}\left(1-\sqrt{x}\right)>0\)

 c,        Ta có \(P=-\sqrt{2}\left(x-\sqrt{x}\right)\)  

                      \(P=-\sqrt{2}\left(x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)\)

                      \(P=-\sqrt{2x}\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{\sqrt{8}}\le\frac{1}{\sqrt{8}}\)

               Dấu = xảy ra \(\Leftrightarrow\)\(\sqrt{x}-\frac{1}{2}=0\)

                                      \(\Rightarrow x=\frac{1}{4}\)

             vậy GTLN của P là \(\frac{1}{\sqrt{8}}\)với x=\(\frac{1}{4}\)

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)
24 tháng 7 2019

tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'< 

Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)

\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)

Tương tự cộng lại ta có đpcm 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

24 tháng 7 2019

ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé 

Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)

\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)

Tương tự cộng lại ra đpcm 

14 tháng 9 2020

a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{3-2\sqrt{3}+1}-\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{9+6\sqrt{2}+2}-3+\sqrt{2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

c) \(\sqrt{25x^2}-2x=-5x-2x=-7x\)(vì x < 0)

d) \(x-5+\sqrt{25-10x+x^2}=x-5+\sqrt{\left(5-x\right)^2}=x-5+x-5=2x-10\) (vì x > 5)

18 tháng 8 2020

a) \(\sqrt{\frac{3a}{4}}.\sqrt{\frac{4a}{27}}=\frac{\sqrt{3a}}{2}.\frac{\sqrt{4a}}{3\sqrt{3}}=\frac{\sqrt{3}.\sqrt{a}.2.\sqrt{a}}{6\sqrt{3}}=\frac{a.2\sqrt{3}}{6\sqrt{3}}=\frac{a}{3}\)

b) \(\sqrt{15x}.\sqrt{\frac{60}{x}}=\sqrt{15x}.\frac{2\sqrt{15}}{\sqrt{x}}=\frac{30\sqrt{x}}{\sqrt{x}}=30\)

18 tháng 8 2020

a) \(\sqrt{\frac{3a}{4}}.\sqrt{\frac{4a}{27}}=\sqrt{\frac{3a}{4}.\frac{4a}{27}}=\sqrt{\frac{1}{9}.a^2}=\sqrt{\frac{1}{9}}.\sqrt{a^2}=\frac{1}{3}.a\)( Vì \(a\ge0\)nên \(\sqrt{a^2}=\left|a\right|=a\))

b) \(\sqrt{15x}.\sqrt{\frac{60}{x}}=\sqrt{15x.\frac{60}{x}}=\sqrt{900}=30\)