Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị hàm số đi qua O (0; 0)
Cho x = 2 ⇒ y = 1,5. 2 = 3
Ta có: A(2; 3)
Vẽ đường thẳng OA ta có đồ thị hàm số.
a) f(1) = 1,5. 1 = 1,5
f(-1) = 1,5. (-1) = -1,5
f(-2) = 1,5. (-2) = -3
f(2) = 1,5. 2 = 3
f(0) =0
b)\(y=-1\Rightarrow x=\dfrac{-1}{1,5}=-\dfrac{2}{3}\)
\(y=0\Rightarrow x=\dfrac{0}{1,5}=0\)
\(y=4,5\Rightarrow x=\dfrac{4,5}{1,5}=3\)
c) y > 0 ⇒1,5x > 0 ⇒x > 0
y < 0 ⇒ 1,5x < 0 ⇒ x < 0
Đồ thị hàm số đi qua O (0; 0)
Cho x = 2 ⇒⇒ y = 1,5. 2 = 3
Ta có: A(2; 3)
Vẽ đường thẳng OA ta có đồ thị hàm số.
a) f(1) = 1,5. 1 = 1,5
f(-1) = 1,5. (-1) = -1,5
f(-2) = 1,5. (-2) = -3
f(2) = 1,5. 2 = 3
f(0) = 0
b)y=−1⇒x=\(\dfrac{-1}{1,5}=-\dfrac{2}{3}\)
b)y=0⇒x==\(\dfrac{0}{1,5}=0\)
y=4,5⇒x=\(\dfrac{4,5}{1,5}=3\)
c) y > 0 ⇒1,5x > 0 ⇒x > 0
y < 0 ⇒ 1,5x < 0 ⇒ x < 0
Bài 2:
\(3x^2+5\ge5>0\forall x\)
nên f(x)>0 với mọi x
Vẽ đồ thị giùm nha! Giúp câu chứng minh thôi. Ở đây vẽ đồ thị xấu lém =,=
Ta có: \(y=f\left(x\right)=3x^2+5\)
Ta có: \(x^2\ge0\forall x\) (luôn đúng)
Nên \(3x^2\ge0\). do đó \(y=f\left(x\right)=3x^2+5\ge5\forall x\)
Vậy hàm số \(y=f\left(x\right)=3x^2+5\) luôn dương với mọi x. (đpcm)
Vẽ đồ thị hàm số:
Vẽ hệ trục tọa độ Oxy
Với x= 2 thì y = 1,5. 2 = 3 ta được điểm A(2; 3)
Vẽ đường thẳng đi qua O, A ta được đồ thị hàm số y = f(x) = 1,5x
f(1) = 1,5. 1 = 1,5
f(-1) = 1,5.(-1) = -1,5
f(-2) = 1,5.(-2) = -3
f(2) = 1,5.2 = 3
f(0) = 0
Cho x =2 được y =-2 =>A(2 ;-1) thuộc đồ thị. Vẽ đồ thị
a) Trên đồ thị ta thấy
f(2)=-1
f(-2) =1
f(4)=-2
f(0)=0;
b) Trên đồ thị ta thấy
y=-1 => x=2
y=0 => x=0
y=2,5 => x=-5
c) Khi y dương y > 0 ứng với phần đồ thị nằm trên trục hoành và bên trái trục tung nên x < 0.
Khi y âm : y < 0 ứng với phần đồ thị nằm trên trục hoành và bên phải trục tung nên x > 0
+) Dựa vào đồ thị ta có:
f(-2) = 3; f(1) = -1,5 và f(2)= -3
+) Kiểm tra lại bằng phép tính:
f(-2) = - 1,5. (-2)= 3.
f(1) = -1,5.1 = -1,5
f(2) = -1,5. 2 = - 3.