Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)
\(C_{18}^k\left(k=1,.....,18\right)\)
Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :
\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)
\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)
\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)
\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)
\(\Leftrightarrow17>2k\)
\(\Leftrightarrow k< \frac{17}{2}\)
Điều kiện (*) nên k = 1,2,3,.....8
Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17
Vậy ta có
\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)
Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.
\(A=\left\{a_1,a_2,...,a_k,c_1,c_2,...,c_j\right\}\\ B=\left\{b_1,b_2,...,b_m,c_1,c_2,...,c_j\right\}\\ \left|A\right|=k+j,\left|B\right|=m+j\\ A\cup B=\left\{a_1,a_2,...,a_k,b_1,b_2,...,b_m,c_1,c_2,...,c_j\right\}\Rightarrow\left|A\cup B\right|=m+k+j\\ A\cap B=\left\{c_1,c_2,...,c_j\right\}\Rightarrow\left|A\cap B\right|=j\)
\(\left|A\cup B\right|=k+j+m+j-j=\left|A\right|+\left|B\right|-\left|A\cap B\right|\)
Kết quả của 5 lần gieo là dãy abcde với a;b;c;d;e nhận một trong hai giá trị N hoặc S. Do đó số phần tử của không gian mẫu: n(Ω) = 2.2.2.2.2 = 32.
Lần đầu tiên xuất hiện mặt ngửa nên a chỉ nhận giá trị S; b;c;d;e nhận S hoặc N nên n(A) = 1.2.2.2.2 = 16
Chọn A.