K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dựng hình vuông ABCD có cạnh bằng a

Trên cạnh AB lấy điểm E sao cho BE = b

Từ E dựng đường thẳng song song BC cắt CD tại G

Ta có: CG = b, CE = ( a – b ), GD = ( a – b )

Trên cạnh AD lấy điểm K sao cho AK = b

Từ K kẻ đường thẳng song song với AB cắt BC tại H và cắt EG tại F

Ta có: KD = ( a – b ), BH = b

Hình vuông ABCD có diện tích bằng a 2

Hình vuông DKFG có diện tích bằng  a - b 2

Hình chữ nhật AEFK có diện tích bằng ( a – b ) b

Hình vuông EBHF có diện tích bằng  b 2

Hình chữ nhật HCGF có diện tích bằng ( a – b ).b

S A B C D = S D K F G + S A E F K = S E B H F + S H C G F

nên a - b 2 + a - b b + a - b b + b 2 = a 2

a - b 2 = a 2 - 2 a b + b 2

2 tháng 11 2017

dùng nhân đa thức với đa thức

2 tháng 11 2017

bạn kai nói đúng rồi đó nha

2 tháng 2 2020

\(a,Đkxđ:x\ne\pm2\)

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-4}\)

b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)

Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)

\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)

Vậy ............

6 tháng 4 2017

Ta có BĐT quen thuộc 

\(a^2+b^2+c^2\ge ab+bc+ca\Rightarrow ab+bc+ca\le7\left(1\right)\)

Áp dụng BĐT Cauchy-Schwarz ta lại có: 

\(\left(a+b+c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\left(a+b+c\right)^2\le21\Rightarrow a+b+c\le\sqrt{21}\left(2\right)\)

Cộng theo vế 2 BĐT \(\left(1\right);\left(2\right)\) ta có: 

\(ab+bc+ca+a+b+c\le7+\sqrt{21}< 7+\sqrt{25}=12\) (ĐPCM)

5 tháng 5 2017

a. Do \(a>0,\) \(b>0\) \(\Rightarrow a,b\) là số dương

Ta có:

* \(a< b\Leftrightarrow a^2< ab\) (nhân cả hai vế với a)

* \(a< b\Leftrightarrow ab< b^2\) (nhân cả hai vế với b)

b. Từ câu a theo tính chất bắc cầu suy ra:\(a^2< b^2\)

Ta có: \(a^2< b^2\Leftrightarrow a^3< ab^2\) (nhân cả hai vế với a)

ab2<b3 (a<b)

\(\Rightarrow a^3< b^3\)

28 tháng 6 2020

Hỏi đáp Toán

16 tháng 12 2016
  1. ta có: x2-2x-15=x2+(3x-5x)-15

=x2 +3x-5x-15

=x(x+3)-5(x+3)

=(x+3)(x-5)

20 tháng 9 2016

Có: \(\frac{a^2}{1-a}=\frac{a^2-1+1}{1-a}=\frac{a^2-1}{1-a}+\frac{1}{1-a}=-\left(a+1\right)+\frac{1}{1-a}\)
Suy ra:
\(\frac{a^2}{1-a}+\frac{b^2}{1-b}+\frac{1}{a+b}+a+b\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}+a+b-a-1-b-1\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\).
 Áp dụng bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}\ge\frac{9}{1-a+1-b+a+b}=\frac{9}{2}\).
Suy ra: \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\ge\frac{9}{2}-2=\frac{5}{2}.\)
Vậy ta có đpcm.
 

20 tháng 9 2016

năm nữa mk giải cho