K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

dùng nhân đa thức với đa thức

2 tháng 11 2017

bạn kai nói đúng rồi đó nha

25 tháng 5 2017

\(a,b)\)Ta có: \(\left(a\pm b\right)^2\)

\(=\left(a\pm b\right)\left(a\pm b\right)\)

\(=a^2\pm ab\pm ab+b^2\)

\(=a^2\pm ab+b^2\)

\(c)\)\(\left(a+b\right)\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)

25 tháng 5 2017

2ab*

16 tháng 1 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dựng hình vuông ABCD có cạnh bằng a

Trên cạnh AB lấy điểm E sao cho BE = b

Từ E dựng đường thẳng song song BC cắt CD tại G

Ta có: CG = b, CE = ( a – b ), GD = ( a – b )

Trên cạnh AD lấy điểm K sao cho AK = b

Từ K kẻ đường thẳng song song với AB cắt BC tại H và cắt EG tại F

Ta có: KD = ( a – b ), BH = b

Hình vuông ABCD có diện tích bằng a 2

Hình vuông DKFG có diện tích bằng  a - b 2

Hình chữ nhật AEFK có diện tích bằng ( a – b ) b

Hình vuông EBHF có diện tích bằng  b 2

Hình chữ nhật HCGF có diện tích bằng ( a – b ).b

S A B C D = S D K F G + S A E F K = S E B H F + S H C G F

nên a - b 2 + a - b b + a - b b + b 2 = a 2

a - b 2 = a 2 - 2 a b + b 2

3 tháng 7 2018

Bài 1 bạn viết rõ yêu cầu của đề ra nhé , mình làm bài 2.

\(a.\left(a-b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^2+2b^2-a^2+2ab-b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a+b=0\)

\(\Leftrightarrow a=-b\left(đpcm\right)\)

\(b.a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)\(\Leftrightarrow a=b=c\left(đpcm\right)\)

\(c.\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2=3ab+3bc+3ac-2ab-2bc-2ac\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow a=b=c\) ( Kết quả câu b)

14 tháng 6 2021

BĐT cần CM tương đương:

\(3-VT\ge1\)

\(\Leftrightarrow\frac{a^2+2bc-a\left(b+c\right)}{a^2+2bc}+...\ge1\) (1)

\(VT\left(1\right)=\frac{\left[a^2+2bc-a\left(b+c\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]}+...\)

\(\ge\frac{\left[a^2+2bc-a\left(b+c\right)+b^2+2ca-b\left(c+a\right)+c^2+2ab-c\left(a+b\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\) (2)

Ta cần chứng minh mẫu của (2) \(\le\left(a^2+b^2+c^2\right)^2\)

... Tự biến đổi ra thôi thi ta được 1 biểu thức không âm luôn đúng

=> BĐT trên đúng

=> đpcm

Dấu "=" xảy ra khi: a = b = c

7 tháng 8 2018

a) \(a^2+b^2=\left(a+b\right)^2-2ab\)

\(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)\(=a^2+b^2=VT\)

\(\Rightarrowđpcm\)

b)\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)

\(VP=a^4+b^4+2a^2b^2-2a^2b^2=a^4+b^4=VT\)\(\Rightarrowđpcm\)

c) ​\(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)

\(VP=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)=a^6+b^6\)

\(VP=VT\Rightarrowđpcm\)

d)\(a^6-b^6=\left(a^2-b^2\right)[\left(a^2+b^2\right)^2-a^2b^2]\)

\(VP=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=a^6-b^6=VT\)

\(VP=VT\Rightarrowđpcm\)

2 tháng 11 2016

\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)+2abc\)

\(=ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+2abc\)

\(=\left(ab^2+ba^2\right)+\left(ac^2+bc^2\right)+\left(ca^2+abc\right)+\left(cb^2+abc\right)\)

\(=ab\left(a+b\right)+c^2\left(a+b\right)+ca\left(a+b\right)+cb\left(a+b\right)\)

\(=\left(a+b\right)\left(ab+c^2+ca+cb\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

2 tháng 11 2016

hình như cộng 2abc chứ sao +2ab

7 tháng 8 2016

biến đổi vế trái :  a. \(\left(a+b\right)^2=a^2+2ab+B^2=VP\)

                          b. \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3=VP\)

                          c. \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=VP\)

                          xem 7 hằng đẳng thức đáng nhớ

7 tháng 8 2016

a)\(=\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2\)

\(=a^2+2ab+b^2\)

b)\(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)

\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3-a^2b-2a^2b+2ab^2+ab^2-b^3\)

\(=a^3-3a^2b-3ab^2-b^3\)

c)\(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\)

\(=a^2+ab+ac+ab+b^2+bc+ac+cb+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ac\)