K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

Hiển nhiên nếu z ∈ R, z ≠ −1 thì Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ngược lại, nếu Giải sách bài tập Toán 12 | Giải sbt Toán 12

thì z – 1 = az + a và a  ≠  1

Suy ra (1 − a)z = a + 1

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và hiển nhiên z  ≠  −1.

24 tháng 5 2017

Hiển nhiên nếu \(z\in\mathbb{R},z\ne-1\) thì \(\dfrac{z-1}{z+1}\in\mathbb{R}\)

Ngược lại, nếu \(\dfrac{z-1}{z+1}=a\in\mathbb{R}\) thì \(z-1=az+a\)\(a\ne1\)

Suy ra \(\left(1-a\right)z=a+1\Rightarrow\)\(z=\dfrac{a+1}{1-a}\in\mathbb{R}\) và hiển nhiên \(z\ne-1\)

12 tháng 9 2017

Hiển nhiên nếu z ∈ R, z ≠ −1 thì Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ngược lại, nếu Giải sách bài tập Toán 12 | Giải sbt Toán 12

thì z – 1 = az + a và a ≠ 1

Suy ra (1 − a)z = a + 1

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và hiển nhiên z ≠ −1.

25 tháng 3 2016

\(a^2=\left|z+\frac{1}{z}\right|^2=\left(z+\frac{1}{z}\right)\left(\overline{z}+\frac{1}{z}\right)=\left|z\right|^2+\frac{z^2+\overline{z}^2}{\left|z\right|^2}+\frac{1}{\left|z\right|^2}\)

                       \(=\frac{\left|z\right|^4+\left(z+\overline{z}\right)^2-2\left|z\right|^2+1}{\left|z\right|^2}\)

Do đó :

\(\left|z\right|^4-\left|z\right|^2\left(a^2+2\right)+1=-\left(z+\overline{z}\right)^2\le0\)

\(\Rightarrow\left|z\right|^2\in\left[\frac{a^2+2-\sqrt{a^4+4a^2}}{2};\frac{a^2+2+\sqrt{a^4+4a^2}}{2}\right]\)

\(\Rightarrow\left|z\right|\in\left[\frac{-a+\sqrt{a^4+4a^2}}{2};\frac{a+\sqrt{a^4+4a^2}}{2}\right]\)

max \(\left|z\right|=\frac{a+\sqrt{a^4+4a^2}}{2}\)

min \(\left|z\right|=;\frac{a+\sqrt{a^4+4a^2}}{2}\)

\(\Leftrightarrow z\in M,z=-\overline{z}\)

1 tháng 4 2017

Giả sử z = a + bi

Khi đó: |z|=√a2+b2|z|=a2+b2

Từ đó suy ra:

|z|=√a2=|a|≥a,|z|=√b2=|b|≥b



5 tháng 5 2016

Nếu một trong các số \(x+y-z;y+z-x;z+x-y\) bằng 0 thì cả 3 số đều bằng 0 và dẫn đến \(x=y=z=0\), mâu thuẫn

Từ giả thiết ta có : \(\begin{cases}x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\\y\log z\left(z+x-y\right)=z\log y\left(x+y-z\right)\\z\log x\left(x+y-z\right)=x\log z\left(y+z-x\right)\end{cases}\)

Xét đẳng thức thứ nhất ta có :

                                               \(x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\Leftrightarrow x\log y=y\log x.\frac{z+x-y}{y+z-x}\)                                                               \(\Leftrightarrow x\log y+y\log x=y\log x\left(\frac{z+x-y}{y+z-x}+1\right)\Leftrightarrow x\log y+z\log x=y\log x\frac{2z}{y+z-x}\)

Biến đổi tương tự với đẳng thức thứ hai ta có :

                                             \(y\log z+z\log y=z\log y\frac{2z}{z+z-y}\)

Ta thấy rằng : \(x^y.y^x=y^z.z^y\Leftrightarrow x\log y+y\log x=y\log z+z\log y\)

Do đó ta cần có :

                    \(y\log x\frac{2z}{y+z-x}=z\log y\frac{2z}{z+x-y}\Leftrightarrow y\log x\left(z+x-y\right)=x\log y\left(y+z-x\right)\), đúng

Do đó ta được : \(x^yy^x=y^z.z^y\)

Chứng minh tương tự ta có : \(y^zz^y=z^x.x^z\)

=> Điều phải chứng minh