Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt z1 + z2 = a; z1. z2 = b; a, b ∈ R
Khi đó, z1 và z2 là hai nghiệm của phương trình
(z – z1)(z – z2) = 0 hay z2 – (z1 + z2)z + z1. z2 = 0 ⇔ z2 – az + b = 0
Đó là phương trình bậc hai đối với hệ số thực. Suy ra điều phải chứng minh.
TRONG VONG MAY PHUT MA GIAI MẤY BÀI LIỀN BẠN LÀ 1 SIÊU NHÂN GIẢI TOÁN...HOẶC BẠN LÀ 1 SIÊU NHÂN SAO CHÉP TỪ SÁCH GIẢI BÀI TẬP LÊN ĐỂ CẦU ...."GP"
Lời giải:
\(\overline{z_1}=2-4i; \overline{z_2}=-1-3i\)
\(\Rightarrow w=z_1\overline{z_2}-2\overline{z_1}=(2+4i)(-1-3i)-2(2-4i)=6-2i\)
\(\Rightarrow |w|=\sqrt{6^2+(-2)^2}=2\sqrt{10}\)
\(\overline{z_1}=2-4i\) ; \(\overline{z_2}=-1-3i\)
\(\Rightarrow w=\left(2+4i\right)\left(-1-3i\right)-2\left(2-4i\right)=6-2i\)
\(\Rightarrow\left|w\right|=\sqrt{6^2+\left(-2\right)^2}=2\sqrt{10}\)
Trường hợp ∆ ≥ 0 ta đã biết kết quả.
Xét trường hợp ∆ < 0, từ công thức nghiệm
z1 = , z2 = với |∆| = 4ac - b2
z1 + z2 =
z1 z2 =