K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Gọi d là ước chung của n+1 và 3n+4

Ta có n+1 ⋮ d; 3n+4d

Suy ra (3n+4) - (3n+3)d => 1d => d = 1

Vậy hai số n+1 và 3n+4 (nN) là hai số nguyên tố cùng nhau

18 tháng 5 2017

Gọi \(d=ƯCLN\left(n+1;3n+4\right)\) (\(d\in N\)*)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N\)*; \(1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1;3n+4\right)=1\)

\(\Rightarrow n+1;3n+4\) nguyên tố cùng nhau với mọi n

25 tháng 11 2017

Gọi d là ƯCLN của 2n+1 và 3n+1 

Ta có:\(2n+1⋮d\Rightarrow3\left(2n+1\right)=6n+3⋮d\)

\(3n+1⋮d\Rightarrow2\left(3n+1\right)=6n+2⋮d\)

\(\Rightarrow\left(6n+3\right)+\left(6n+2\right)=1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)

Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau

25 tháng 11 2017

Vào đây nha share.net%2Fboiduongtoanlop6%2Fhai-s-nguyn-t-cng-nhau-ton-lp-6-51528658&usg=AOvVaw2-F1NrwqLYt_pBX-S_389C.

14 tháng 12 2016

hum ....to chiu

 

23 tháng 11 2016

Gọi ƯCLN(3n+1 ; 5n + 2 ) là d

=> \(\begin{cases}3n+2⋮d\\5n+2⋮d\end{cases}\)

=> 5 ( 3n + 2 ) - 3 ( 5n + 2 ) ⋮ d

=> 2 ⋮ d

Mà chưa xác định được n chẵn hay lẻ

=> Đề sai

23 tháng 11 2016

Nhầm nha, Đề sai ồi,... Đề đúng:

3n + 2 và 5n + 3 với n N

15 tháng 11 2017

CMR: n+1 & 3n+4 là 2 số nguyên tố cùng nhau

G/s: ƯCLN(n+1;3n+4) = d

Ta có:

n+1 =>3.(n+1) =>3n+3

3n+4=>1.(3n+4)=>3n+4

=> (3n+4) - (3n+3) d

=> 3n+4 - 3n-3 d

=> 1 d

=> d ƯC(1) = {1}

KL: Vậy n+1 & 3n+4 là 2 số nguyên tố cùng nhau

19 tháng 3 2020

gọi d là ƯC(2n + 1; 4n + 1)

=> 2n + 1 chia hết cho d và 4n + 1 chia hết cho d

=> 4n + 2 chia hết cho d và 4n + 1  chia hết cho d

=> 4n + 2 - 4n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n + 1 và 4n + 1 là 2 snt cùng cùng nhau

27 tháng 10 2017

Gọi UCLN(n+1,3n+4) là d

Ta có: \(\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow}\left(3n+4\right)-\left(3n+3\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy n+1 và 3n+4 nguyên tố cùng nhau

27 tháng 10 2017

Gọi d là ƯCLN(n+1;3n+4)

Ta có:

\(n+1⋮d\)

\(3n+4⋮d\)

\(\Rightarrow n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)

Vậy \(\left(3n+4\right)-\left(3n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

Vậy 2 số đó là hai số nguyên tố cùng nhau.

23 tháng 11 2016

Giải:

Gọi \(d=UCLN\left(7n+10;5n+7\right)\)

Ta có:

\(7n+10⋮d\Rightarrow2\left(7n+10\right)⋮d\Rightarrow14n+20⋮d\)

\(5n+7⋮d\Rightarrow3\left(5n+7\right)⋮d\Rightarrow15n+21⋮d\)

\(\Rightarrow15n+21-14n-20⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow d=UCLN\left(7n+10;5n+7\right)=1\)

\(\Rightarrow\) 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau

 

23 tháng 11 2016

Gọi ƯCLN7n+10 ; 5n+7 là d

Theo đề ra ta có :

\(\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\)

=> \(5\left(7n+10\right)-7\left(5n+7\right)⋮d\)

=> \(45n+50-\left(45n+49\right)⋮d\)

=> 1⋮ d

=> d = 1

Vậy (7n+10 ; 5n + 7 ) = 1