Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 2n+1 và 3n+1
Ta có:\(2n+1⋮d\Rightarrow3\left(2n+1\right)=6n+3⋮d\)
\(3n+1⋮d\Rightarrow2\left(3n+1\right)=6n+2⋮d\)
\(\Rightarrow\left(6n+3\right)+\left(6n+2\right)=1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)
Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
A) Gọi 2 số tự nhiên liên tiếp (khác 0) là n và n+1.
Gọi ƯCLN của 2 số trên là a, ta có: n chia hết cho a; n+1 chia hết cho a => n+1-n chia hết cho a hay 1 chia hết cho a => a=1 => n và n+1 nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
B) Gọi 2 số lẻ liên tiếp là n và n+2. Gọi a là ƯCLN của n và n+2, ta có:
n chia hết cho a; n+2 chia hết cho a => n+2-n chia hết cho a hay 2 chia hết cho a.
Do n; n+2 lẻ nên a lẻ => a=1 => n và n+2 nguyên tố cùng nhau.
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.
Chứng tỏ rằng hai số \(n+1\) và \(3n+4,\left(n\in\mathbb{N}\right)\) là hai số nguyên tố cùng nhau ?
Gọi \(d=ƯCLN\left(n+1;3n+4\right)\) (\(d\in N\)*)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
Vì \(d\in N\)*; \(1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1;3n+4\right)=1\)
\(\Rightarrow n+1;3n+4\) nguyên tố cùng nhau với mọi n
b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)
Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)
3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2)
Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
a) Gọi ƯCLN (2n + 5 ; 3n + 7) là d. Ta có :
2n + 5 chia hết cho d => 3(2n + 5) = 6n +15 chia hết cho d
3n + 7 chia hết cho d => 2 (3n + 7) = 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau. (đpcm)
b) Gọi ƯCLN (2n + 3 ; 3n + 4) là c. Ta có :
2n + 3 chia hết cho c => 3(2n + 3) = 6n + 9 chia hết cho c
3n + 4 chia hết cho c => 2(3n + 4) = 6n + 8 chia hết cho c
=> (6n + 9) - (6n + 8) chia hết cho c.
=> 1 chia hết cho c
=> c = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau (đpcm)
Li-ke cho mình nhé Phạm Thị Thủy Diệp xinh đẹp!