K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

Có : 55n + 1 – 55n

= 55n.55 – 55n

= 55n(55 – 1)

= 55n.54

Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.

Vậy 55n + 1 – 55n chia hết cho 54.

14 tháng 8 2016

\(55^{n+1}-55^n\)

\(=55^n.55-55^n.1\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Vì có 54 trong tích 

=> 55n . 54 chia hết cho 54

=> Điều phải chứng minh

14 tháng 8 2016

55n+1−55= 55n.55−55= 55n(55−1)=(55n.54)⋮54

- Vậy (55n+1−55n)⋮54

3 tháng 6 2016

Ta có: 

55n+1-55n=55n(55-1)=55n.54 chia hết cho 54

Vậy 55n+1-55n chia hết cho 54 (đpcm)

3 tháng 6 2016

\(55^{n+1}-55^n=55^n\cdot\left(55-1\right)=55^n\cdot54\)chia hết cho 54 với mọi n là số tự nhiên.

23 tháng 9 2015

câu hỏi tương tự nha bạn.

23 tháng 9 2015

55n+1-55n  chia hết cho 54 
= 55n.(551-1)
= 55n.54  chia hết cho 54
=>  55^n+1 -55^n chia hết cho 54 ( với mọi n thuộc N)

20 tháng 4 2017

Bài giải:

55n + 1 – 55n chia hết cho 54 (n ∈ N)

Ta có 55n + 1 – 55n = 55n . 55 - 55n

= 55n (55 - 1)

= 55n . 54

Vì 54 chia hết cho 54 nên 55n . 54 luôn chia hết cho 54 với n là số tự nhiên.

Vậy 55n + 1 – 55n chia hết cho 54.

2 tháng 8 2017

55n + 1 – 55n chia hết cho 54 (n ∈ N)

Ta có 55n + 1 – 55n = 55n . 55 - 55n

= 55n (55 - 1)

= 55n . 54

Vì 54 chia hết cho 54 nên 55n . 54 luôn chia hết cho 54 với n là số tự nhiên.

Vậy 55n + 1 – 55n chia hết cho 54.

25 tháng 6 2019

a)

\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)

b)

\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)

c)

\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)

23 tháng 1 2018

là 10 nhé

13 tháng 6 2017

Ta có:

55n+1+55n=55n.(55+1)

                 =55n.56 chia hết cho 56

\(\Rightarrow\) 55n+1+55n:56

Vậy ...

các bạn tự viết câu kết luận nha

13 tháng 6 2017

Giúp Mk đi mà

20 tháng 8 2018

Ta có :\(55^{n+1}-55=55.55^n-55=55\left(55^n-1\right)=55\left(55^n-1^n\right)=55.\left(55-1\right)^n=55.54^n⋮54\)

\(\Rightarrow55^{n+1}-55⋮54\) (điều phải chứng minh)

6 tháng 10 2020

Ta có :

55n+1 - 55 = 55.55n - 55 = 55 (55n - 1) = 55.(55n - 1n) = 55.(55-1)n

= 55.54n \(⋮\) 54

\(\Rightarrow\) 55n+1 - 55\(⋮\)54 (ĐPCM).

CHÚC BẠN HỌC TỐT ok

19 tháng 8 2018

\(55^{n+1}-55^n=55^n.55^1-55^n=55^n.55-55^n=55^n.\left(55-1\right)\)

\(=55^n.54\left(đpcm\right)\)

\(55^n.54\)chia hết cho 54

à bạn coi cái đề lại giùm mk nha hình như là \(\left(55^{n+1}-55^n\right)\)

3 tháng 9 2018

a,  11n+2+122n+1

= 11n.121+12.122n

= 11n.(133-12)+12.122n

= 11n.133-11nn .12+12.122n

=12.(144n-11n)+11n. 133

Có 144nn-11n \(⋮\)144-11=133

11n.133\(⋮\)133

=> dpcm