K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Cách dựng:

- Trên cạnh AB dựng điểm B' sao cho = 2 cm

- Trên cạnh AC dựng điểm C' sao cho AC' = 3cm

- Nối B'C'

Khi đó AB'C' là tam giác cần dựng

* Chứng minh:

Theo cách dựng, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lại có:  ∠ A chung

Vậy △ AB'C' đồng dạng  △ ABC (c.g.c)

28 tháng 2 2018

+) Trong tam giác vuông A’B’C’ có \(\widehat{A'}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

A′B′2+A′C′2 =B′C′2

=> A′C′2=B′C′2−A′B′2=152−92=144

=> A’C’ =12 (cm)

Trong tam giác vuông ABC có \(\widehat{A}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

BC2=AB2+AC2= 62+82=100

Suy ra: BC = 10 (cm)

Ta có: \(\dfrac{A'B'}{AB}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\dfrac{A'C'}{AC}=\dfrac{12}{8}=\dfrac{3}{2}\)

\(\dfrac{B'C'}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)

Suy ra: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=\dfrac{3}{2}\)

Vậy ∆ A’B’C’ đồng dạng với ∆ ABC

28 tháng 2 2021

A B C 9 12 D E

a, Xét tam giác ABC và tam giác EDC ta có : 

^C _ chung 

\(\frac{BC}{DC}=\frac{AC}{EC}\)

^BAE = ^CED = 90^0 

=> tam giác ABC ~ tam giác CED ( g.c.g ) 

HAB ? ^H ở đâu bạn ? 

b, Vì AD là tia phân giác tam giác ABC ta có : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)

hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé 

c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét : 

\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính 

d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số 

22 tháng 4 2017

Giải:

Trên cạnh AB lấy điểm M sao cho AM= 2323AB.

Từ m kẻ đường song song với AB cắt AC tại N.

Ta có ∆AMN ∽ ∆ABC theo tỉ số đồng dạng K=2323

Dựng ∆A'B'C' = ∆AMN(theo trường hợp cạnh cạnh cạnh)

7 tháng 2 2018

Trên cạnh AB lấy điểm M sao cho AM= 232323AB.

Từ m kẻ đường song song với AB cắt AC tại N.

Ta có ∆AMN ∽ ∆ABC theo tỉ số đồng dạng K=232323

Dựng ∆A'B'C' = ∆AMN(theo trường hợp cạnh cạnh cạnh)

17 tháng 5 2021

Ta có :  \(\frac{\Delta_{ABC}}{\Delta_{DÈF}}=\frac{3}{5}\Rightarrow\frac{12}{\Delta_{DEF}}=\frac{3}{5}\)

\(\Rightarrow\Delta_{DEF}=\frac{3}{5}:\frac{1}{12}=\frac{36}{5}=7,2\)cm 

Vậy chu vi tam giác DEF là 7,2 m 

17 tháng 5 2021

\(\text{Ta có:}\)\(\Delta ABC\text{∽}\Delta DEF\)\(\text{theo tỉ số đồng dạng}\)\(k=\frac{3}{5}\)

\(\text{Nửa chu vi}\)\(\Delta ABC\)\(=\)\(\text{nửa chu vi}\)\(\Delta DEF=\frac{3}{5}\)

\(\text{Mà chu vi}\)\(\Delta ABC=12cm\)

\(\text{Nửa chu vi}\)\(\Delta ABC\)\(:\)\(12:2=6cm\)

\(\text{Nửa chu vi}\)\(\Delta DEF\)\(:\)\(6:\frac{3}{5}=10cm\)

\(\text{Chu vi}\)\(\Delta DEF\)\(:\)\(10.2=20cm\)