Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(m< n\Leftrightarrow4m< 4n\) (nhân cả hai vế với 4)
\(\Leftrightarrow4m+1< 4n+1\) (cộng cả hai vế với 1)
mà 1<5 \(\Leftrightarrow4n+1< 4n+5\)
\(\Rightarrow4m+1< 4n+5\)
b. Ta có: \(m< n\Leftrightarrow-5m>-5n\) (nhân cả hai vế với -5)
\(\Leftrightarrow3-5m>3-5n\) (cộng cả hai vế với 3)
mà 1<3 \(\Leftrightarrow1-5n< 3-5n\)
\(\Rightarrow3-5m>1-5n\)
A/Ta có m<n
=>4m<4n
=>4m-7<4n-7
B/Ta có m<n
=>2m<2n
=>2m+3<2n+3
C/Ta có l3xl=3x khi 3x>=0<=>x>=3
3x=x+7
<=>3x-x=7
<=>2x=7
<=>x=7/2(tm)
Ta lại cól3xl=-3x khi 3x<0<=>x<0
-3x=x+7
<=>-3x-x=7
<=>-4x=7
<=>x=-7/4(tm)
Vậy pt có tập nhiệm S={7/2;-7/4}
a) Ta có: a < b
=> 2a < 2b vì 2 > 0
=> 2a - 3 < 2b - 3 (cộng vào cả hai vế -3)
b) Ta có: -3 < 5
=> 2b - 3 < 2b + 5 (cộng vào hai vế với 2b) mà 2a - 3 < 2b - 3 (chứng minh trên)
Vậy: 2a - 3 < 3b + 5 (tính chất bắc cầu)
Câu a : \(x^2-3x+3=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Xem lại đề câu a .
Lời giải:
1)
Ta có: \(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x+2}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\frac{x+2+x-2+x^2+1}{x^2-4}\)
\(=\frac{x^2+2x+1}{x^2-4}=\frac{(x+1)^2}{x^2-4}\)
2) Với mọi \(-2< x< 2\Rightarrow (x-2)(x+2)< 0\Leftrightarrow x^2-4< 0\)
Mà \((x+1)^2>0\forall x\neq 1; -2< x< 2\) nên \(\frac{(x+1)^2}{x^2-4}< 0\)
Tức là biểu thức A luôn nhận giá trị âm. Ta có đpcm.
a, Áp dụng bđt Cauchy ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
b, a(a+2)<(a+1)2
=>a2+2a<a2+2a+1(đúng)
\(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\)
\(A=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)
Ta có: -2 < x < 2
=> x thuộc { -1 ; 0 ; 1 }
Mà x khác -1 nên x = 0 ; x = 1
Với x = 0 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(0+1\right)^2}{\left(0-2\right)\left(0+2\right)}=\dfrac{1}{-4}\)
=> A có giá trị âm
Với x = 1 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(1+1\right)^2}{\left(1-2\right)\left(1+2\right)}=\dfrac{4}{-3}\)
=> A có giá trị âm
Vậy với -2 < x < 2 ; x khác -1 thì A có giá trị âm
Ta có: m < n ⇒ 4m < 4n ⇒ 4m + 1 < 4n + 1 (1)
1 < 5 ⇒ 4n + 1 < 4n + 5 (2)
Từ (1) và (2) suy ra: 4m + 1 < 4n + 5