K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

5,Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

Câu 1:

$S=1+\cos ^2x+\cos ^4x+...+\cos ^{2n}x=1+\cos ^2x+(\cos ^2x)^2+...+(\cos ^2x)^n=\frac{(\cos ^2x-1)(1+\cos ^2x+(\cos ^2x)^2+...+(\cos ^2x)^n}{\cos ^2x-1}$

$=\frac{(\cos ^2x)^{n+1}-1}{\cos ^2x-1}=\frac{\cos ^{2n+2}x-1}{\sin ^2x}$

24 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.36, -5.2) A = (-4.36, -5.2) A = (-4.36, -5.2) B = (11, -5.2) B = (11, -5.2) B = (11, -5.2)

9 tháng 4 2017

a) Áp dụng công thức tính số hạng tổng quát, ta có:

u3 = 3 = u1.q2 và u5 = 27 = u1.q4.

Vì 27 = (u1q2).q2 = 3.q2 nên q2 = 9 hay q = ±3.

Thay q2 = 9 vào công thức chứa u3, ta có u1 = .

- Nếu q = 3, ta có cấp số nhân: , 1, 3, 9, 27.

- Nếu q = -3, ta có cáp số nhân: , -1, 3, -9, 27.

b) Áp dụng công thức tính số hạng tỏng quát từ giả thiết, ta có:

hay

Từ hệ trên ta được: 50.q = 25 => q = .

Và u1 = .

Ta có cấp số nhân .



18 tháng 5 2017

Tổ hợp - xác suất

20 tháng 12 2019

B

4 tháng 4 2017

Trong bài này ta áp dụng công thức tinh số hạng tổng quát un = u1.qn-1, biết hai đại lượng, ta sẽ tìm đại lượng còn lại:

a) q = 3.

b) u1 =

c) Theo đề bài ta có un = 192, từ đó ta tìm được n. Đáp số: n =7



25 tháng 5 2017

a)
\(\dfrac{u_6}{u_1}=q^5=\dfrac{486}{2}=243=3^5\) . Suy ra: \(q=3\).
b)
\(u_4=u_1q^3=u_1.\left(\dfrac{2}{3}\right)^3=\dfrac{8}{21}\)\(\Rightarrow u_1=\dfrac{9}{7}\).
c) \(u_n=3.\left(-2\right)^{n-1}=192\)\(\Leftrightarrow\left(-2\right)^{n-1}=64=\left(-2\right)^6\)\(\Leftrightarrow n-1=6\)\(\Leftrightarrow n=7\).
Vậy số hạng thứ 7 bằng 192.

26 tháng 12 2019
https://i.imgur.com/BzNqi00.jpg
26 tháng 12 2019
https://i.imgur.com/PHFvoJD.jpg